Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames
- URL: http://arxiv.org/abs/2002.08418v1
- Date: Fri, 14 Feb 2020 10:00:03 GMT
- Title: Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames
- Authors: Cong Wang, Witold Pedrycz, ZhiWu Li, MengChu Zhou, Jun Zhao
- Abstract summary: Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
- Score: 146.63177174491082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instead of directly utilizing an observed image including some outliers,
noise or intensity inhomogeneity, the use of its ideal value (e.g. noise-free
image) has a favorable impact on clustering. Hence, the accurate estimation of
the residual (e.g. unknown noise) between the observed image and its ideal
value is an important task. To do so, we propose an $\ell_0$
regularization-based Fuzzy $C$-Means (FCM) algorithm incorporating a
morphological reconstruction operation and a tight wavelet frame transform. To
achieve a sound trade-off between detail preservation and noise suppression,
morphological reconstruction is used to filter an observed image. By combining
the observed and filtered images, a weighted sum image is generated. Since a
tight wavelet frame system has sparse representations of an image, it is
employed to decompose the weighted sum image, thus forming its corresponding
feature set. Taking it as data for clustering, we present an improved FCM
algorithm by imposing an $\ell_0$ regularization term on the residual between
the feature set and its ideal value, which implies that the favorable
estimation of the residual is obtained and the ideal value participates in
clustering. Spatial information is also introduced into clustering since it is
naturally encountered in image segmentation. Furthermore, it makes the
estimation of the residual more reliable. To further enhance the segmentation
effects of the improved FCM algorithm, we also employ the morphological
reconstruction to smoothen the labels generated by clustering. Finally, based
on the prototypes and smoothed labels, the segmented image is reconstructed by
using a tight wavelet frame reconstruction operation. Experimental results
reported for synthetic, medical, and color images show that the proposed
algorithm is effective and efficient, and outperforms other algorithms.
Related papers
- Reconstruction of compressed spectral imaging based on global structure
and spectral correlation [17.35611893815407]
The proposed method uses the convolution kernel to operate the global image.
To solve the problem that convolutional sparse coding is insensitive to low frequency, the global total-variation (TV) constraint is added.
The proposed method improves the reconstruction quality by up to 7 dB in PSNR and 10% in SSIM.
arXiv Detail & Related papers (2022-10-27T14:31:02Z) - Embedding contrastive unsupervised features to cluster in- and
out-of-distribution noise in corrupted image datasets [18.19216557948184]
Using search engines for web image retrieval is a tempting alternative to manual curation when creating an image dataset.
Their main drawback remains the proportion of incorrect (noisy) samples retrieved.
We propose a two stage algorithm starting with a detection step where we use unsupervised contrastive feature learning.
We find that the alignment and uniformity principles of contrastive learning allow OOD samples to be linearly separated from ID samples on the unit hypersphere.
arXiv Detail & Related papers (2022-07-04T16:51:56Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - Correlation Clustering Reconstruction in Semi-Adversarial Models [70.11015369368272]
Correlation Clustering is an important clustering problem with many applications.
We study the reconstruction version of this problem in which one is seeking to reconstruct a latent clustering corrupted by random noise and adversarial modifications.
arXiv Detail & Related papers (2021-08-10T14:46:17Z) - Convolutional Autoencoder for Blind Hyperspectral Image Unmixing [0.0]
spectral unmixing is a technique to decompose a mixed pixel into two fundamental representatives: endmembers and abundances.
In this paper, a novel architecture is proposed to perform blind unmixing on hyperspectral images.
arXiv Detail & Related papers (2020-11-18T17:41:31Z) - G-image Segmentation: Similarity-preserving Fuzzy C-Means with Spatial
Information Constraint in Wavelet Space [148.0882928072907]
This work elaborates a similarity-preserving Fuzzy C-Means (FCM) algorithm for G-image segmentation.
Experiments on synthetic and real-world G-images demonstrate that it indeed achieves higher robustness and performance than the state-of-the-art FCM algorithms.
arXiv Detail & Related papers (2020-06-20T07:26:33Z) - Residual-driven Fuzzy C-Means Clustering for Image Segmentation [152.609322951917]
We elaborate on residual-driven Fuzzy C-Means (FCM) for image segmentation.
Built on this framework, we present a weighted $ell_2$-norm fidelity term by weighting mixed noise distribution.
The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over existing FCM-related algorithms.
arXiv Detail & Related papers (2020-04-15T15:46:09Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
We come up with a Kullback-Leibler (KL) divergence-based Fuzzy C-Means (FCM) algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation.
The proposed algorithm works well and comes with better segmentation performance than other comparative algorithms.
arXiv Detail & Related papers (2020-02-21T05:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.