SD-GAN: Structural and Denoising GAN reveals facial parts under
occlusion
- URL: http://arxiv.org/abs/2002.08448v1
- Date: Wed, 19 Feb 2020 21:12:49 GMT
- Title: SD-GAN: Structural and Denoising GAN reveals facial parts under
occlusion
- Authors: Samik Banerjee, Sukhendu Das
- Abstract summary: We propose a generative model to reconstruct the missing parts of the face which are under occlusion.
A novel adversarial training algorithm has been designed for a bimodal mutually exclusive Generative Adversarial Network (GAN) model.
Our proposed technique outperforms the competing methods by a considerable margin, even for boosting the performance of Face Recognition.
- Score: 7.284661356980246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Certain facial parts are salient (unique) in appearance, which substantially
contribute to the holistic recognition of a subject. Occlusion of these salient
parts deteriorates the performance of face recognition algorithms. In this
paper, we propose a generative model to reconstruct the missing parts of the
face which are under occlusion. The proposed generative model (SD-GAN)
reconstructs a face preserving the illumination variation and identity of the
face. A novel adversarial training algorithm has been designed for a bimodal
mutually exclusive Generative Adversarial Network (GAN) model, for faster
convergence. A novel adversarial "structural" loss function is also proposed,
comprising of two components: a holistic and a local loss, characterized by
SSIM and patch-wise MSE. Ablation studies on real and synthetically occluded
face datasets reveal that our proposed technique outperforms the competing
methods by a considerable margin, even for boosting the performance of Face
Recognition.
Related papers
- End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Dynamic Facial Expression Recognition under Partial Occlusion with
Optical Flow Reconstruction [20.28462460359439]
We propose a new solution based on an auto-encoder with skip connections to reconstruct the occluded part of the face in the optical flow domain.
Our experiments show that the proposed method reduce significantly the gap, in terms of recognition accuracy, between occluded and non-occluded situations.
arXiv Detail & Related papers (2020-12-24T12:28:47Z) - Face Hallucination via Split-Attention in Split-Attention Network [58.30436379218425]
convolutional neural networks (CNNs) have been widely employed to promote the face hallucination.
We propose a novel external-internal split attention group (ESAG) to take into account the overall facial profile and fine texture details simultaneously.
By fusing the features from these two paths, the consistency of facial structure and the fidelity of facial details are strengthened.
arXiv Detail & Related papers (2020-10-22T10:09:31Z) - Implicit Subspace Prior Learning for Dual-Blind Face Restoration [66.67059961379923]
A novel implicit subspace prior learning (ISPL) framework is proposed as a generic solution to dual-blind face restoration.
Experimental results demonstrate significant perception-distortion improvement of ISPL against existing state-of-the-art methods.
arXiv Detail & Related papers (2020-10-12T08:04:24Z) - On Improving the Generalization of Face Recognition in the Presence of
Occlusions [13.299431908881425]
Occlusion-aware face REcOgnition (OREO) approach learned discriminative facial templates despite the presence of such occlusions.
OREO improved the generalization ability of face recognition under occlusions by (10.17%) in a single-image-based setting.
arXiv Detail & Related papers (2020-06-11T20:17:23Z) - Occlusion-Adaptive Deep Network for Robust Facial Expression Recognition [56.11054589916299]
We propose a landmark-guided attention branch to find and discard corrupted features from occluded regions.
An attention map is first generated to indicate if a specific facial part is occluded and guide our model to attend to non-occluded regions.
This results in more diverse and discriminative features, enabling the expression recognition system to recover even though the face is partially occluded.
arXiv Detail & Related papers (2020-05-12T20:42:55Z) - Dual-Attention GAN for Large-Pose Face Frontalization [59.689836951934694]
We present a novel Dual-Attention Generative Adversarial Network (DA-GAN) for photo-realistic face frontalization.
Specifically, a self-attention-based generator is introduced to integrate local features with their long-range dependencies.
A novel face-attention-based discriminator is applied to emphasize local features of face regions.
arXiv Detail & Related papers (2020-02-17T20:00:56Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.