Computationally Tractable Riemannian Manifolds for Graph Embeddings
- URL: http://arxiv.org/abs/2002.08665v2
- Date: Sat, 6 Jun 2020 14:04:49 GMT
- Title: Computationally Tractable Riemannian Manifolds for Graph Embeddings
- Authors: Calin Cruceru, Gary B\'ecigneul, Octavian-Eugen Ganea
- Abstract summary: We show how to learn and optimize graph embeddings in certain curved Riemannian spaces.
Our results serve as new evidence for the benefits of non-Euclidean embeddings in machine learning pipelines.
- Score: 10.420394952839242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representing graphs as sets of node embeddings in certain curved Riemannian
manifolds has recently gained momentum in machine learning due to their
desirable geometric inductive biases, e.g., hierarchical structures benefit
from hyperbolic geometry. However, going beyond embedding spaces of constant
sectional curvature, while potentially more representationally powerful, proves
to be challenging as one can easily lose the appeal of computationally
tractable tools such as geodesic distances or Riemannian gradients. Here, we
explore computationally efficient matrix manifolds, showcasing how to learn and
optimize graph embeddings in these Riemannian spaces. Empirically, we
demonstrate consistent improvements over Euclidean geometry while often
outperforming hyperbolic and elliptical embeddings based on various metrics
that capture different graph properties. Our results serve as new evidence for
the benefits of non-Euclidean embeddings in machine learning pipelines.
Related papers
- Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive
Learning [69.6810940330906]
We propose a novel contrastive learning framework to learn high-quality graph embedding.
Specifically, we design the alignment metric that effectively captures the hierarchical data-invariant information.
We show that in the hyperbolic space one has to address the leaf- and height-level uniformity which are related to properties of trees.
arXiv Detail & Related papers (2023-10-27T15:31:42Z) - Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
We propose a generalization of Transformers towards operating entirely on the product of constant curvature spaces.
We also provide a kernelized approach to non-Euclidean attention, which enables our model to run in time and memory cost linear to the number of nodes and edges.
arXiv Detail & Related papers (2023-09-08T02:44:37Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Tight and fast generalization error bound of graph embedding in metric
space [54.279425319381374]
We show that graph embedding in non-Euclidean metric space can outperform that in Euclidean space with much smaller training data than the existing bound has suggested.
Our new upper bound is significantly tighter and faster than the existing one, which can be exponential to $R$ and $O(frac1S)$ at the fastest.
arXiv Detail & Related papers (2023-05-13T17:29:18Z) - FMGNN: Fused Manifold Graph Neural Network [102.61136611255593]
Graph representation learning has been widely studied and demonstrated effectiveness in various graph tasks.
We propose the Fused Manifold Graph Neural Network (NN), a novel GNN architecture that embeds graphs into different Manifolds during training.
Our experiments demonstrate that NN yields superior performance over strong baselines on the benchmarks of node classification and link prediction tasks.
arXiv Detail & Related papers (2023-04-03T15:38:53Z) - Heterogeneous manifolds for curvature-aware graph embedding [6.3351090376024155]
Graph embeddings are used in a broad range of Graph ML applications.
The quality of such embeddings crucially depends on whether the geometry of the space matches that of the graph.
arXiv Detail & Related papers (2022-02-02T18:18:35Z) - Directed Graph Embeddings in Pseudo-Riemannian Manifolds [0.0]
We show that general directed graphs can be effectively represented by an embedding model that combines three components.
We demonstrate the representational capabilities of this method by applying it to the task of link prediction.
arXiv Detail & Related papers (2021-06-16T10:31:37Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
We learn continuous representations of graphs in spaces of symmetric matrices over C.
These spaces offer a rich geometry that simultaneously admits hyperbolic and Euclidean subspaces.
The proposed models are able to automatically adapt to very dissimilar arrangements without any apriori estimates of graph features.
arXiv Detail & Related papers (2021-05-11T18:14:52Z) - Ultrahyperbolic Representation Learning [13.828165530602224]
In machine learning, data is usually represented in a (flat) Euclidean space where distances between points are along straight lines.
We propose a representation living on a pseudo-Riemannian manifold of constant nonzero curvature.
We provide the necessary learning tools in this geometry and extend gradient-based optimization techniques.
arXiv Detail & Related papers (2020-07-01T03:49:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.