Kernel and Rich Regimes in Overparametrized Models
- URL: http://arxiv.org/abs/2002.09277v3
- Date: Mon, 27 Jul 2020 15:04:41 GMT
- Title: Kernel and Rich Regimes in Overparametrized Models
- Authors: Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko,
Pedro Savarese, Itay Golan, Daniel Soudry, Nathan Srebro
- Abstract summary: We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
- Score: 69.40899443842443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recent line of work studies overparametrized neural networks in the "kernel
regime," i.e. when the network behaves during training as a kernelized linear
predictor, and thus training with gradient descent has the effect of finding
the minimum RKHS norm solution. This stands in contrast to other studies which
demonstrate how gradient descent on overparametrized multilayer networks can
induce rich implicit biases that are not RKHS norms. Building on an observation
by Chizat and Bach, we show how the scale of the initialization controls the
transition between the "kernel" (aka lazy) and "rich" (aka active) regimes and
affects generalization properties in multilayer homogeneous models. We also
highlight an interesting role for the width of a model in the case that the
predictor is not identically zero at initialization. We provide a complete and
detailed analysis for a family of simple depth-$D$ models that already exhibit
an interesting and meaningful transition between the kernel and rich regimes,
and we also demonstrate this transition empirically for more complex matrix
factorization models and multilayer non-linear networks.
Related papers
- How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
We study the optimization of wide neural networks (NNs) via gradient flow (GF)
We show that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF.
We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
arXiv Detail & Related papers (2022-04-22T15:56:43Z) - Training Integrable Parameterizations of Deep Neural Networks in the
Infinite-Width Limit [0.0]
Large-width dynamics has emerged as a fruitful viewpoint and led to practical insights on real-world deep networks.
For two-layer neural networks, it has been understood that the nature of the trained model radically changes depending on the scale of the initial random weights.
We propose various methods to avoid this trivial behavior and analyze in detail the resulting dynamics.
arXiv Detail & Related papers (2021-10-29T07:53:35Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well.
An emerging paradigm for describing this unexpected behavior is in terms of a emphdouble descent curve.
We provide a precise high-dimensional analysis of generalization with the Neural Tangent Kernel, which characterizes the behavior of wide neural networks with gradient descent.
arXiv Detail & Related papers (2020-08-15T20:55:40Z) - Phase diagram for two-layer ReLU neural networks at infinite-width limit [6.380166265263755]
We draw the phase diagram for the two-layer ReLU neural network at the infinite-width limit.
We identify three regimes in the phase diagram, i.e., linear regime, critical regime and condensed regime.
In the linear regime, NN training dynamics is approximately linear similar to a random feature model with an exponential loss decay.
In the condensed regime, we demonstrate through experiments that active neurons are condensed at several discrete orientations.
arXiv Detail & Related papers (2020-07-15T06:04:35Z) - The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
Networks [43.860358308049044]
In work, we show that these common perceptions can be completely false in the early phase of learning.
We argue that this surprising simplicity can persist in networks with more layers with convolutional architecture.
arXiv Detail & Related papers (2020-06-25T17:42:49Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.