Sensing individual nuclear spins with a single rare-earth electron spin
- URL: http://arxiv.org/abs/2002.09357v2
- Date: Thu, 27 Feb 2020 09:14:27 GMT
- Title: Sensing individual nuclear spins with a single rare-earth electron spin
- Authors: Thomas Kornher, Da-Wu Xiao, Kangwei Xia, Fiammetta Sardi, Nan Zhao,
Roman Kolesov, J\"org Wrachtrup
- Abstract summary: We present the spectroscopy of single Ce$3+$ ions in a yttrium orthosilicate host, featuring a coherence time of $T_2=124,mu$s.
This coherent interaction time is sufficiently long to isolate $89$Y nuclear spins from the nuclear spin bath of $89$Y.
It allows for the detection of a single nearby $29$Si nuclear spin, native to the host material with 5% abundance.
- Score: 5.645330467051217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rare-earth related electron spins in crystalline hosts are unique material
systems, as they can potentially provide a direct interface between telecom
band photons and long-lived spin quantum bits. Specifically, their optically
accessible electron spins in solids interacting with nuclear spins in their
environment are valuable quantum memory resources. Detection of nearby
individual nuclear spins, so far exclusively shown for few dilute nuclear spin
bath host systems such as the NV center in diamond or the silicon vacancy in
silicon carbide, remained an open challenge for rare-earths in their host
materials, which typically exhibit dense nuclear spin baths. Here, we present
the electron spin spectroscopy of single Ce$^{3+}$ ions in a yttrium
orthosilicate host, featuring a coherence time of $T_{2}=124\,\mu$s. This
coherent interaction time is sufficiently long to isolate proximal $^{89}$Y
nuclear spins from the nuclear spin bath of $^{89}$Y. Furthermore, it allows
for the detection of a single nearby $^{29}$Si nuclear spin, native to the host
material with ~5% abundance. This study opens the door to quantum memory
applications in rare-earth ion related systems based on coupled environmental
nuclear spins, potentially useful for quantum error correction schemes.
Related papers
- The spin lifetime of an individual atomic nucleus investigated via local-probe single-shot readout [2.2908892874617357]
Nuclear spins owe their long-lived magnetic states to their excellent isolation from their environment.
Detailed knowledge of and control over the atomic environment of a nuclear spin is key to optimizing conditions for quantum information applications.
Here, we demonstrate single-shot readout of an individual $text49$Ti nuclear spin with an STM.
arXiv Detail & Related papers (2024-10-11T10:47:46Z) - Measuring nuclear spin qubits by qudit-enhanced spectroscopy in Silicon
Carbide [0.0]
Nuclear spins with hyperfine coupling to single electron spins are highly valuable quantum bits.
In this work we probe and characterise the particularly rich nuclear spin environment around single silicon vacancy color-centers (V2) in 4H-SiC.
arXiv Detail & Related papers (2023-10-24T06:59:39Z) - Coherent control of a nuclear spin via interactions with a rare-earth
ion in the solid-state [0.0]
Individually addressed Er$3+$ ions in solid-state hosts are promising resources for quantum repeaters.
While the Er$3+$ electron spin provides a spin-photon interface, ancilla nuclear spins could enable multi-qubit registers with longer storage times.
We demonstrate coherent coupling between the electron spin of a single Er$3+$ ion and a single $I=1/2$ nuclear spin in the solid-state host crystal.
arXiv Detail & Related papers (2022-09-12T21:44:21Z) - Robust millisecond coherence times of erbium electron spins [7.862622132486542]
We report GHz-range electron spin transitions of $167mathrmEr3+$ in yttrium oxide.
We find paramagnetic impurities are the dominant source of decoherence.
These coherence lifetimes are among the longest found in crystalline hosts.
arXiv Detail & Related papers (2022-07-06T14:29:11Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Decoupling Nuclear Spins via Interaction-Induced Freezing in Nitrogen
Vacancy Centers in Diamond [0.0]
Nitrogen-Vacancy (NV) centers in diamonds provide a room-temperature platform for emerging quantum technologies.
We demonstrate a freezing protocol for an NV center to isolate its intrinsic nuclear spin from a noisy electromagnetic environment.
arXiv Detail & Related papers (2022-04-08T07:01:51Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.