Quantum Simulation of 2D Quantum Chemistry in Optical Lattices
- URL: http://arxiv.org/abs/2002.09373v1
- Date: Fri, 21 Feb 2020 16:00:36 GMT
- Title: Quantum Simulation of 2D Quantum Chemistry in Optical Lattices
- Authors: Javier Arg\"uello-Luengo, Alejandro Gonz\'alez-Tudela, Tao Shi, Peter
Zoller, J. Ignacio Cirac
- Abstract summary: We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
- Score: 59.89454513692418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmarking numerical methods in quantum chemistry is one of the key
opportunities that quantum simulators can offer. Here, we propose an analog
simulator for discrete 2D quantum chemistry models based on cold atoms in
optical lattices. We first analyze how to simulate simple models, like the
discrete versions of H and H$_2^+$, using a single fermionic atom. We then show
that a single bosonic atom can mediate an effective Coulomb repulsion between
two fermions, leading to the analog of molecular Hydrogen in two dimensions. We
extend this approach to larger systems by introducing as many mediating atoms
as fermions, and derive the effective repulsion law. In all cases, we analyze
how the continuous limit is approached for increasing optical lattice sizes.
Related papers
- Hamiltonian Engineering of collective XYZ spin models in an optical cavity [0.0]
Quantum simulation using synthetic quantum systems offers unique opportunities to explore open questions in many-body physics.
Here, we are able to realize an all-to-all interaction with arbitrary quadratic Hamiltonian or effectively an infinite range tunable Heisenberg XYZ model.
The versatility of our platform to include more than two relevant momentum states, combined with the flexibility of the simulated Hamiltonians by adding cavity tones opens rich opportunities for quantum simulation and quantum sensing in matter-wave interferometers and other quantum sensors such as optical clocks and magnetometers.
arXiv Detail & Related papers (2024-02-29T18:26:13Z) - Predicting molecular vibronic spectra using time-domain analog quantum
simulation [0.0]
We introduce a method for scalable analog quantum simulation of molecular spectroscopy.
Our approach can treat more complicated molecular models than previous ones, requires fewer approximations, and can be extended to open quantum systems.
We experimentally demonstrate our algorithm on a trapped-ion device, exploiting both intrinsic electronic and motional degrees of freedom.
arXiv Detail & Related papers (2022-09-14T11:32:55Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Theoretical methods to design and test quantum simulators for the
compact Abelian Higgs model [0.0]
In 1+1 dimensions, the Abelian Higgs model can be quantum simulated using a ladder-shaped optical lattice with Rydberg-dressed atoms.
We show that the building blocks of the Hamiltonian calculations are models with one and two spins.
We argue that near-term technology could be used to quantum simulate models with two or more spins.
arXiv Detail & Related papers (2021-07-23T17:33:34Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.