Adiabatic ground state preparation in an expanding lattice
- URL: http://arxiv.org/abs/2002.09592v1
- Date: Sat, 22 Feb 2020 01:18:48 GMT
- Title: Adiabatic ground state preparation in an expanding lattice
- Authors: Christopher T. Olund, Maxwell Block, Snir Gazit, John McGreevy and
Norman Y. Yao
- Abstract summary: We implement and characterize a numerical algorithm inspired by the $s$-source framework [Phys. Rev.B 93, 045127] for building a quantum many-body ground state wavefunction on a lattice of size $2L$.
We find that the construction works particularly well when the gap is large and, interestingly, at scale in critical points.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We implement and characterize a numerical algorithm inspired by the
$s$-source framework [Phys. Rev.~B 93, 045127 (2016)] for building a quantum
many-body ground state wavefunction on a lattice of size $2L$ by applying
adiabatic evolution to the corresponding ground state at size $L$, along with
$L$ interleaved ancillae. The procedure can in principle be iterated to
repeatedly double the size of the system. We implement the algorithm for
several one dimensional spin model Hamiltonians, and find that the construction
works particularly well when the gap is large and, interestingly, at scale
invariant critical points. We explain this feature as a natural consequence of
the lattice expansion procedure. This behavior holds for both the integrable
transverse-field Ising model and non-integrable variations. We also develop an
analytic perturbative understanding of the errors deep in either phase of the
transverse field Ising model, and suggest how the circuit could be modified to
parametrically reduce errors. In addition to sharpening our perspective on
entanglement renormalization in 1D, the algorithm could also potentially be
used to build states experimentally, enabling the realization of certain
long-range correlated states with low depth quantum circuits.
Related papers
- Simplified projection on total spin zero for state preparation on quantum computers [0.5461938536945723]
We introduce a simple algorithm for projecting on $J=0$ states of a many-body system.
Our approach performs the necessary projections using the one-body operators $J_x$ and $J_z$.
Given the reduced complexity in terms of gates, this approach can be used to prepare approximate ground states of even-even nuclei.
arXiv Detail & Related papers (2024-10-03T17:44:24Z) - Stability and Loop Models from Decohering Non-Abelian Topological Order [0.0]
We identify relevant statistical mechanical models for decohering non-Abelian TO.
We find a remarkable stability to quantum channels which proliferate non-Abelian anyons with large quantum dimension.
Our work opens up the possibility of non-Abelian TO being robust against maximally proliferating certain anyons.
arXiv Detail & Related papers (2024-09-18T18:00:01Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Generating function for projected entangled-pair states [0.1759252234439348]
We extend the generating function approach for tensor network diagrammatic summation.
Taking the form of a one-particle excitation, we show that the excited state can be computed efficiently in the generating function formalism.
We conclude with a discussion on generalizations to multi-particle excitations.
arXiv Detail & Related papers (2023-07-16T15:49:37Z) - Even shorter quantum circuit for phase estimation on early
fault-tolerant quantum computers with applications to ground-state energy
estimation [5.746732081406236]
We develop a phase estimation method with a distinct feature.
The total cost of the algorithm satisfies the Heisenberg-limited scaling $widetildemathcalO(epsilon-1)$.
Our algorithm may significantly reduce the circuit depth for performing phase estimation tasks on early fault-tolerant quantum computers.
arXiv Detail & Related papers (2022-11-22T03:15:40Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Spectral Analysis of Product Formulas for Quantum Simulation [0.0]
We show that the Trotter step size needed to estimate an energy eigenvalue within precision can be improved in scaling from $epsilon$ to $epsilon1/2$ for a large class of systems.
Results partially generalize to diabatic processes, which remain in a narrow energy band separated from the rest of the spectrum by a gap.
arXiv Detail & Related papers (2021-02-25T03:17:25Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.