Private Stochastic Convex Optimization: Efficient Algorithms for
Non-smooth Objectives
- URL: http://arxiv.org/abs/2002.09609v3
- Date: Tue, 17 Nov 2020 05:30:43 GMT
- Title: Private Stochastic Convex Optimization: Efficient Algorithms for
Non-smooth Objectives
- Authors: Raman Arora, Teodor V. Marinov, Enayat Ullah
- Abstract summary: We propose an algorithm based on noisy mirror which achieves a first-order descent, inversely in the regime when the privacy parameter is proportional to the number of samples.
- Score: 28.99826590351627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we revisit the problem of private stochastic convex
optimization. We propose an algorithm based on noisy mirror descent, which
achieves optimal rates both in terms of statistical complexity and number of
queries to a first-order stochastic oracle in the regime when the privacy
parameter is inversely proportional to the number of samples.
Related papers
- Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Random Postprocessing for Combinatorial Bayesian Optimization [0.552480439325792]
We numerically study the effect of a postprocessing method on Bayesian optimization.
We find the postprocessing method significantly reduces the number of sequential steps to find the global optimum.
arXiv Detail & Related papers (2023-09-06T08:59:34Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning.
In this work, we present the first trial in the single-dependent generalization of AUPRC optimization.
Experiments on three image retrieval datasets on speak to the effectiveness and soundness of our framework.
arXiv Detail & Related papers (2022-09-27T09:06:37Z) - Bring Your Own Algorithm for Optimal Differentially Private Stochastic
Minimax Optimization [44.52870407321633]
holy grail of these settings is to guarantee the optimal trade-off between the privacy and the excess population loss.
We provide a general framework for solving differentially private minimax optimization (DP-SMO) problems.
Our framework is inspired from the recently proposed Phased-ERM method [20] for nonsmooth differentially private convex optimization (DP-SCO)
arXiv Detail & Related papers (2022-06-01T10:03:20Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
We show that PrivUnit achieves the optimal variance among a large family of locally private randomizers.
We also develop a new variant of PrivUnit based on the Gaussian distribution which is more amenable to mathematical analysis and enjoys the same optimality guarantees.
arXiv Detail & Related papers (2022-05-05T06:43:46Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
We consider the ubiquitous problem of gaussian process (GP) bandit optimization from the lens of privacy-preserving statistics.
We propose a solution for differentially private GP bandit optimization that combines a uniform kernel approximator with random perturbations.
Our algorithms maintain differential privacy throughout the optimization procedure and critically do not rely explicitly on the sample path for prediction.
arXiv Detail & Related papers (2021-02-24T18:52:24Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.