Neural Architecture Search for Compressed Sensing Magnetic Resonance
Image Reconstruction
- URL: http://arxiv.org/abs/2002.09625v7
- Date: Thu, 2 Nov 2023 07:25:23 GMT
- Title: Neural Architecture Search for Compressed Sensing Magnetic Resonance
Image Reconstruction
- Authors: Jiangpeng Yan, Shuo Chen, Yongbing Zhang and Xiu Li
- Abstract summary: We propose a novel and efficient network for the MR image reconstruction problem via NAS instead of manual attempts.
Experimental results show that our searched network can produce better reconstruction results compared to previous state-of-the-art methods.
Our proposed method can reach a better trade-off between cost and reconstruction performance for MR reconstruction problem with good generalizability.
- Score: 36.636219616998225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have demonstrated that deep learning (DL) based compressed
sensing (CS) implementation can accelerate Magnetic Resonance (MR) Imaging by
reconstructing MR images from sub-sampled k-space data. However, network
architectures adopted in previous methods are all designed by handcraft. Neural
Architecture Search (NAS) algorithms can automatically build neural network
architectures which have outperformed human designed ones in several vision
tasks. Inspired by this, here we proposed a novel and efficient network for the
MR image reconstruction problem via NAS instead of manual attempts.
Particularly, a specific cell structure, which was integrated into the
model-driven MR reconstruction pipeline, was automatically searched from a
flexible pre-defined operation search space in a differentiable manner.
Experimental results show that our searched network can produce better
reconstruction results compared to previous state-of-the-art methods in terms
of PSNR and SSIM with 4-6 times fewer computation resources. Extensive
experiments were conducted to analyze how hyper-parameters affect
reconstruction performance and the searched structures. The generalizability of
the searched architecture was also evaluated on different organ MR datasets.
Our proposed method can reach a better trade-off between computation cost and
reconstruction performance for MR reconstruction problem with good
generalizability and offer insights to design neural networks for other medical
image applications. The evaluation code will be available at
https://github.com/yjump/NAS-for-CSMRI.
Related papers
- Attention Hybrid Variational Net for Accelerated MRI Reconstruction [7.046523233290946]
The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem.
This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image.
We propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domain.
arXiv Detail & Related papers (2023-06-21T16:19:07Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
Deep neural networks have been applied to reconstruct undersampled k-space data and have shown improved reconstruction performance.
This work proposes a novel framework to learn k-space sampling trajectories by considering it as an Ordinary Differential Equation (ODE) problem.
Experiments were conducted on different in-viv datasets (textite.g., brain and knee images) acquired with different sequences.
arXiv Detail & Related papers (2022-04-05T20:28:42Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Enhanced MRI Reconstruction Network using Neural Architecture Search [22.735244777008422]
We present an enhanced MRI reconstruction network using a residual in residual basic block.
For each cell in the basic block, we use the differentiable neural architecture search (NAS) technique to automatically choose the optimal operation.
This new heterogeneous network is evaluated on two publicly available datasets and outperforms all current state-of-the-art methods.
arXiv Detail & Related papers (2020-08-19T03:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.