Unsupervised Question Decomposition for Question Answering
- URL: http://arxiv.org/abs/2002.09758v3
- Date: Tue, 6 Oct 2020 18:47:48 GMT
- Title: Unsupervised Question Decomposition for Question Answering
- Authors: Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, Douwe Kiela
- Abstract summary: We propose an algorithm for One-to-N Unsupervised Sequence Sequence (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions.
We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets.
- Score: 102.56966847404287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We aim to improve question answering (QA) by decomposing hard questions into
simpler sub-questions that existing QA systems are capable of answering. Since
labeling questions with decompositions is cumbersome, we take an unsupervised
approach to produce sub-questions, also enabling us to leverage millions of
questions from the internet. Specifically, we propose an algorithm for One-to-N
Unsupervised Sequence transduction (ONUS) that learns to map one hard,
multi-hop question to many simpler, single-hop sub-questions. We answer
sub-questions with an off-the-shelf QA model and give the resulting answers to
a recomposition model that combines them into a final answer. We show large QA
improvements on HotpotQA over a strong baseline on the original, out-of-domain,
and multi-hop dev sets. ONUS automatically learns to decompose different kinds
of questions, while matching the utility of supervised and heuristic
decomposition methods for QA and exceeding those methods in fluency.
Qualitatively, we find that using sub-questions is promising for shedding light
on why a QA system makes a prediction.
Related papers
- Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
We present a new state-of-the-art for answering ambiguous questions that exploits a database of unambiguous questions generated from Wikipedia.
Our method improves performance by 15% on recall measures and 10% on measures which evaluate disambiguating questions from predicted outputs.
arXiv Detail & Related papers (2023-08-16T20:23:16Z) - Interpretable AMR-Based Question Decomposition for Multi-hop Question
Answering [12.35571328854374]
We propose a Question Decomposition method based on Abstract Meaning Representation (QDAMR) for multi-hop QA.
We decompose a multi-hop question into simpler sub-questions and answer them in order.
Experimental results on HotpotQA demonstrate that our approach is competitive for interpretable reasoning.
arXiv Detail & Related papers (2022-06-16T23:46:33Z) - Modeling Multi-hop Question Answering as Single Sequence Prediction [88.72621430714985]
We propose a simple generative approach (PathFid) that extends the task beyond just answer generation.
PathFid explicitly models the reasoning process to resolve the answer for multi-hop questions.
Our experiments demonstrate that PathFid leads to strong performance gains on two multi-hop QA datasets.
arXiv Detail & Related papers (2022-05-18T21:57:59Z) - Calibrating Trust of Multi-Hop Question Answering Systems with
Decompositional Probes [14.302797773412543]
Multi-hop Question Answering (QA) is a challenging task since it requires an accurate aggregation of information from multiple context paragraphs.
Recent work in multi-hop QA has shown that performance can be boosted by first decomposing the questions into simpler, single-hop questions.
We show that decomposition is an effective form of probing QA systems as well as a promising approach to explanation generation.
arXiv Detail & Related papers (2022-04-16T01:03:36Z) - Ask to Understand: Question Generation for Multi-hop Question Answering [11.626390908264872]
Multi-hop Question Answering (QA) requires the machine to answer complex questions by finding scattering clues and reasoning from multiple documents.
We propose a novel method to complete multi-hop QA from the perspective of Question Generation (QG)
arXiv Detail & Related papers (2022-03-17T04:02:29Z) - Improving the Question Answering Quality using Answer Candidate
Filtering based on Natural-Language Features [117.44028458220427]
We address the problem of how the Question Answering (QA) quality of a given system can be improved.
Our main contribution is an approach capable of identifying wrong answers provided by a QA system.
In particular, our approach has shown its potential while removing in many cases the majority of incorrect answers.
arXiv Detail & Related papers (2021-12-10T11:09:44Z) - How to Build Robust FAQ Chatbot with Controllable Question Generator? [5.680871239968297]
We propose a high-quality, diverse, controllable method to generate adversarial samples with a semantic graph.
The fluent and semantically generated QA pairs fool our passage retrieval model successfully.
We find that the generated data set improves the generalizability of the QA model to the new target domain.
arXiv Detail & Related papers (2021-11-18T12:54:07Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
Question Generation (QG) is the task of generating a plausible question for a passage, answer> pair.
We make use of freely available news summary data, transforming declarative sentences into appropriate questions using dependency parsing, named entity recognition and semantic role labeling.
The resulting questions are then combined with the original news articles to train an end-to-end neural QG model.
arXiv Detail & Related papers (2021-09-16T13:08:43Z) - Reinforced Multi-task Approach for Multi-hop Question Generation [47.15108724294234]
We take up Multi-hop question generation, which aims at generating relevant questions based on supporting facts in the context.
We employ multitask learning with the auxiliary task of answer-aware supporting fact prediction to guide the question generator.
We demonstrate the effectiveness of our approach through experiments on the multi-hop question answering dataset, HotPotQA.
arXiv Detail & Related papers (2020-04-05T10:16:59Z) - Do Multi-Hop Question Answering Systems Know How to Answer the
Single-Hop Sub-Questions? [23.991872322492384]
We investigate whether top-performing models for multi-hop questions understand the underlying sub-questions like humans.
We show that multiple state-of-the-art multi-hop QA models fail to correctly answer a large portion of sub-questions.
Our work takes a step forward towards building a more explainable multi-hop QA system.
arXiv Detail & Related papers (2020-02-23T15:16:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.