Improving STDP-based Visual Feature Learning with Whitening
- URL: http://arxiv.org/abs/2002.10177v1
- Date: Mon, 24 Feb 2020 11:48:22 GMT
- Title: Improving STDP-based Visual Feature Learning with Whitening
- Authors: Pierre Falez and Pierre Tirilly and Ioan Marius Bilasco
- Abstract summary: In this paper, we propose to use whitening as a pre-processing step before learning features with STDP.
Experiments on CIFAR-10 show that whitening allows STDP to learn visual features that are closer to the ones learned with standard neural networks.
We also propose an approximation of whitening as convolution kernels that is computationally cheaper to learn and more suited to be implemented on neuromorphic hardware.
- Score: 1.9981375888949475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, spiking neural networks (SNNs) emerge as an alternative to
deep neural networks (DNNs). SNNs present a higher computational efficiency
using low-power neuromorphic hardware and require less labeled data for
training using local and unsupervised learning rules such as spike
timing-dependent plasticity (STDP). SNN have proven their effectiveness in
image classification on simple datasets such as MNIST. However, to process
natural images, a pre-processing step is required. Difference-of-Gaussians
(DoG) filtering is typically used together with on-center/off-center coding,
but it results in a loss of information that is detrimental to the
classification performance. In this paper, we propose to use whitening as a
pre-processing step before learning features with STDP. Experiments on CIFAR-10
show that whitening allows STDP to learn visual features that are closer to the
ones learned with standard neural networks, with a significantly increased
classification performance as compared to DoG filtering. We also propose an
approximation of whitening as convolution kernels that is computationally
cheaper to learn and more suited to be implemented on neuromorphic hardware.
Experiments on CIFAR-10 show that it performs similarly to regular whitening.
Cross-dataset experiments on CIFAR-10 and STL-10 also show that it is fairly
stable across datasets, making it possible to learn a single whitening
transformation to process different datasets.
Related papers
- NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
This paper presents neural networks for network intrusion detection systems (NIDS) that operate on flow data preprocessed with a time window.
It requires only eleven features which do not rely on deep packet inspection and can be found in most NIDS datasets and easily obtained from conventional flow collectors.
The reported training accuracy exceeds 99% for the proposed method with as little as twenty neural network input features.
arXiv Detail & Related papers (2024-10-24T11:36:19Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding.
The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library.
The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function.
arXiv Detail & Related papers (2021-05-29T15:28:30Z) - Examining and Mitigating Kernel Saturation in Convolutional Neural
Networks using Negative Images [0.8594140167290097]
We analyze the effect of convolutional kernel saturation in CNNs.
We propose a simple data augmentation technique to mitigate saturation and increase classification accuracy, by supplementing negative images to the training dataset.
Our results show that CNNs are indeed susceptible to convolutional kernel saturation and that supplementing negative images to the training dataset can offer a statistically significant increase in classification accuracies.
arXiv Detail & Related papers (2021-05-10T06:06:49Z) - Variational models for signal processing with Graph Neural Networks [3.5939555573102853]
This paper is devoted to signal processing on point-clouds by means of neural networks.
In this work, we investigate the use of variational models for such Graph Neural Networks to process signals on graphs for unsupervised learning.
arXiv Detail & Related papers (2021-03-30T13:31:11Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z) - Gradient Centralization: A New Optimization Technique for Deep Neural
Networks [74.935141515523]
gradient centralization (GC) operates directly on gradients by centralizing the gradient vectors to have zero mean.
GC can be viewed as a projected gradient descent method with a constrained loss function.
GC is very simple to implement and can be easily embedded into existing gradient based DNNs with only one line of code.
arXiv Detail & Related papers (2020-04-03T10:25:00Z) - A Deep Unsupervised Feature Learning Spiking Neural Network with
Binarized Classification Layers for EMNIST Classification using SpykeFlow [0.0]
unsupervised learning technique of spike timing dependent plasticity (STDP) using binary activations are used to extract features from spiking input data.
The accuracies obtained for the balanced EMNIST data set compare favorably with other approaches.
arXiv Detail & Related papers (2020-02-26T23:47:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.