Efficient Semantic Video Segmentation with Per-frame Inference
- URL: http://arxiv.org/abs/2002.11433v2
- Date: Fri, 17 Jul 2020 12:57:29 GMT
- Title: Efficient Semantic Video Segmentation with Per-frame Inference
- Authors: Yifan Liu, Chunhua Shen, Changqian Yu, Jingdong Wang
- Abstract summary: In this work, we process efficient semantic video segmentation in a per-frame fashion during the inference process.
We employ compact models for real-time execution. To narrow the performance gap between compact models and large models, new knowledge distillation methods are designed.
- Score: 117.97423110566963
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For semantic segmentation, most existing real-time deep models trained with
each frame independently may produce inconsistent results for a video sequence.
Advanced methods take into considerations the correlations in the video
sequence, e.g., by propagating the results to the neighboring frames using
optical flow, or extracting the frame representations with other frames, which
may lead to inaccurate results or unbalanced latency. In this work, we process
efficient semantic video segmentation in a per-frame fashion during the
inference process. Different from previous per-frame models, we explicitly
consider the temporal consistency among frames as extra constraints during the
training process and embed the temporal consistency into the segmentation
network. Therefore, in the inference process, we can process each frame
independently with no latency, and improve the temporal consistency with no
extra computational cost and post-processing. We employ compact models for
real-time execution. To narrow the performance gap between compact models and
large models, new knowledge distillation methods are designed. Our results
outperform previous keyframe based methods with a better trade-off between the
accuracy and the inference speed on popular benchmarks, including the
Cityscapes and Camvid. The temporal consistency is also improved compared with
corresponding baselines which are trained with each frame independently. Code
is available at: https://tinyurl.com/segment-video
Related papers
- FusionFrames: Efficient Architectural Aspects for Text-to-Video
Generation Pipeline [4.295130967329365]
This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model.
The design of our model significantly reduces computational costs compared to other masked frame approaches.
We evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores.
arXiv Detail & Related papers (2023-11-22T00:26:15Z) - Neighbor Correspondence Matching for Flow-based Video Frame Synthesis [90.14161060260012]
We introduce a neighbor correspondence matching (NCM) algorithm for flow-based frame synthesis.
NCM is performed in a current-frame-agnostic fashion to establish multi-scale correspondences in the spatial-temporal neighborhoods of each pixel.
coarse-scale module is designed to leverage neighbor correspondences to capture large motion, while the fine-scale module is more efficient to speed up the estimation process.
arXiv Detail & Related papers (2022-07-14T09:17:00Z) - Distortion-Aware Network Pruning and Feature Reuse for Real-time Video
Segmentation [49.17930380106643]
We propose a novel framework to speed up any architecture with skip-connections for real-time vision tasks.
Specifically, at the arrival of each frame, we transform the features from the previous frame to reuse them at specific spatial bins.
We then perform partial computation of the backbone network on the regions of the current frame that captures temporal differences between the current and previous frame.
arXiv Detail & Related papers (2022-06-20T07:20:02Z) - Representation Recycling for Streaming Video Analysis [19.068248496174903]
StreamDEQ aims to infer frame-wise representations on videos with minimal per-frame computation.
We show that StreamDEQ is able to recover near-optimal representations in a few frames' time and maintain an up-to-date representation throughout the video duration.
arXiv Detail & Related papers (2022-04-28T13:35:14Z) - Efficient Video Segmentation Models with Per-frame Inference [117.97423110566963]
We focus on improving the temporal consistency without introducing overhead in inference.
We propose several techniques to learn from the video sequence, including a temporal consistency loss and online/offline knowledge distillation methods.
arXiv Detail & Related papers (2022-02-24T23:51:36Z) - AuxAdapt: Stable and Efficient Test-Time Adaptation for Temporally
Consistent Video Semantic Segmentation [81.87943324048756]
In video segmentation, generating temporally consistent results across frames is as important as achieving frame-wise accuracy.
Existing methods rely on optical flow regularization or fine-tuning with test data to attain temporal consistency.
This paper presents an efficient, intuitive, and unsupervised online adaptation method, AuxAdapt, for improving the temporal consistency of most neural network models.
arXiv Detail & Related papers (2021-10-24T07:07:41Z) - ALANET: Adaptive Latent Attention Network forJoint Video Deblurring and
Interpolation [38.52446103418748]
We introduce a novel architecture, Adaptive Latent Attention Network (ALANET), which synthesizes sharp high frame-rate videos.
We employ combination of self-attention and cross-attention module between consecutive frames in the latent space to generate optimized representation for each frame.
Our method performs favorably against various state-of-the-art approaches, even though we tackle a much more difficult problem.
arXiv Detail & Related papers (2020-08-31T21:11:53Z) - All at Once: Temporally Adaptive Multi-Frame Interpolation with Advanced
Motion Modeling [52.425236515695914]
State-of-the-art methods are iterative solutions interpolating one frame at the time.
This work introduces a true multi-frame interpolator.
It utilizes a pyramidal style network in the temporal domain to complete the multi-frame task in one-shot.
arXiv Detail & Related papers (2020-07-23T02:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.