Single-spin scanning magnetic microscopy with radial basis function
reconstruction algorithm
- URL: http://arxiv.org/abs/2002.12023v2
- Date: Wed, 29 Apr 2020 08:52:50 GMT
- Title: Single-spin scanning magnetic microscopy with radial basis function
reconstruction algorithm
- Authors: Cheng-Jie Wang, Rui Li, Bei Ding, Pengfei Wang, Wenhong Wang, Mengqi
Wang, Maosen Guo, Chang-Kui Duan, Fazhan Shi and Jiangfeng Du
- Abstract summary: We present a scheme to image a millitesla magnetic field by tracking the magnetic resonance frequency.
The radial basis function algorithm is employed to reconstruct the magnetic field from the contour lines.
Our scheme had a maximum detectable magnetic field gradient of 0.86 mT per pixel.
- Score: 21.678442505821835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exotic magnetic structures, such as magnetic skyrmions and domain walls, are
becoming more important in nitrogen-vacancy center scanning magnetometry.
However, a systematic imaging approach to mapping stray fields with fluctuation
of several milliteslas generated by such structures is not yet available. Here
we present a scheme to image a millitesla magnetic field by tracking the
magnetic resonance frequency, which can record multiple contour lines for a
magnetic field. The radial basis function algorithm is employed to reconstruct
the magnetic field from the contour lines. Simulations with shot noise
quantitatively confirm the high quality of the reconstruction algorithm. The
method was validated by imaging the stray field of a frustrated magnet. Our
scheme had a maximum detectable magnetic field gradient of 0.86 mT per pixel,
which enables the efficient imaging of millitesla magnetic fields.
Related papers
- Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Reformulating the NMR Quantum Mechanics Fundamental Aspects: Spin 1/2
Evolution in Magnetic Field Gradients [0.0]
We consider the energy of the spin system interacting with magnetic fields and all the other parts of the energy as a constant reservoir.
The possibility to make NMR images without RF magnetic fields is an indication that entangled spin1/2 states can be manipulated by magnetic field gradients.
arXiv Detail & Related papers (2023-08-20T10:06:17Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Scanning gradiometry with a single spin quantum magnetometer [0.0]
We show that gradiometry provides important advantages over static field imaging.
We demonstrate the capabilities of gradiometry by imaging the nanotesla fields appearing above topographic defects and atomic steps in an antiferromagnet, direct currents in a graphene device, and para- and diamagnetic metals.
arXiv Detail & Related papers (2022-02-18T11:21:31Z) - Electromagnetic induction imaging with a scanning radio-frequency atomic
magnetometer [0.9786690381850356]
We demonstrate electromagnetic induction imaging with an unshielded, portable radio-frequency atomic magnetometer scanning over the target object.
The ability to scan the magnetometer over the object relies on the miniaturization of the sensor head and on the active compensation of the ambient magnetic field.
arXiv Detail & Related papers (2021-06-08T17:44:43Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Multi-Angle Reconstruction of Domain Morphology with All-Optical Diamond
Magnetometry [0.0]
We introduce a multi-angle reconstruction technique (MARe) that captures the full nanoscale domain morphology in all magnetic-field regimes.
Our approach brings non-invasive nanoscale magnetic field imaging capability to the study of a wider pool of magnetic materials and phenomena.
arXiv Detail & Related papers (2021-01-25T19:00:01Z) - Magnetic domains and domain wall pinning in two-dimensional ferromagnets
revealed by nanoscale imaging [1.614014297785306]
We employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains.
The high spatial resolution of this technique enables imaging of magnetic domains and allows to resolve domain walls pinned by defects.
arXiv Detail & Related papers (2020-09-28T16:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.