Optimal Feature Manipulation Attacks Against Linear Regression
- URL: http://arxiv.org/abs/2003.00177v1
- Date: Sat, 29 Feb 2020 04:26:59 GMT
- Title: Optimal Feature Manipulation Attacks Against Linear Regression
- Authors: Fuwei Li, Lifeng Lai, and Shuguang Cui
- Abstract summary: In this paper, we investigate how to manipulate the coefficients obtained via linear regression by adding carefully designed poisoning data points to the dataset or modify the original data points.
Given the energy budget, we first provide the closed-form solution of the optimal poisoning data point when our target is modifying one designated regression coefficient.
We then extend the analysis to the more challenging scenario where the attacker aims to change one particular regression coefficient while making others to be changed as small as possible.
- Score: 64.54500628124511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate how to manipulate the coefficients obtained via
linear regression by adding carefully designed poisoning data points to the
dataset or modify the original data points. Given the energy budget, we first
provide the closed-form solution of the optimal poisoning data point when our
target is modifying one designated regression coefficient. We then extend the
analysis to the more challenging scenario where the attacker aims to change one
particular regression coefficient while making others to be changed as small as
possible. For this scenario, we introduce a semidefinite relaxation method to
design the best attack scheme. Finally, we study a more powerful adversary who
can perform a rank-one modification on the feature matrix. We propose an
alternating optimization method to find the optimal rank-one modification
matrix. Numerical examples are provided to illustrate the analytical results
obtained in this paper.
Related papers
- LFFR: Logistic Function For (single-output) Regression [0.0]
We implement privacy-preserving regression training using data encrypted under a fully homomorphic encryption scheme.
We develop a novel and efficient algorithm called LFFR for homomorphic regression using the logistic function.
arXiv Detail & Related papers (2024-07-13T17:33:49Z) - Meta-Learning with Generalized Ridge Regression: High-dimensional Asymptotics, Optimality and Hyper-covariance Estimation [14.194212772887699]
We consider meta-learning within the framework of high-dimensional random-effects linear models.
We show the precise behavior of the predictive risk for a new test task when the data dimension grows proportionally to the number of samples per task.
We propose and analyze an estimator inverse random regression coefficients based on data from the training tasks.
arXiv Detail & Related papers (2024-03-27T21:18:43Z) - Adaptive Optimization for Prediction with Missing Data [6.800113478497425]
We show that some adaptive linear regression models are equivalent to learning an imputation rule and a downstream linear regression model simultaneously.
In settings where data is strongly not missing at random, our methods achieve a 2-10% improvement in out-of-sample accuracy.
arXiv Detail & Related papers (2024-02-02T16:35:51Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Regression with Label Differential Privacy [64.21020761920322]
We derive a label DP randomization mechanism that is optimal under a given regression loss function.
We prove that the optimal mechanism takes the form of a "randomized response on bins"
arXiv Detail & Related papers (2022-12-12T17:41:32Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Piecewise linear regression and classification [0.20305676256390928]
This paper proposes a method for solving multivariate regression and classification problems using piecewise linear predictors.
A Python implementation of the algorithm described in this paper is available at http://cse.lab.imtlucca.it/bemporad/parc.
arXiv Detail & Related papers (2021-03-10T17:07:57Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
modularity [8.594811303203581]
We present an improved method for symbolic regression that seeks to fit data to formulas that are Pareto-optimal.
It improves on the previous state-of-the-art by typically being orders of magnitude more robust toward noise and bad data.
We develop a method for discovering generalized symmetries from gradient properties of a neural network fit.
arXiv Detail & Related papers (2020-06-18T18:01:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.