PF-Net: Point Fractal Network for 3D Point Cloud Completion
- URL: http://arxiv.org/abs/2003.00410v1
- Date: Sun, 1 Mar 2020 05:40:21 GMT
- Title: PF-Net: Point Fractal Network for 3D Point Cloud Completion
- Authors: Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le
- Abstract summary: Point Fractal Network (PF-Net) is a novel learning-based approach for precise and high-fidelity point cloud completion.
PF-Net preserves the spatial arrangements of the incomplete point cloud and can figure out the detailed geometrical structure of the missing region(s) in the prediction.
Our experiments demonstrate the effectiveness of our method for several challenging point cloud completion tasks.
- Score: 6.504317278066694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a Point Fractal Network (PF-Net), a novel
learning-based approach for precise and high-fidelity point cloud completion.
Unlike existing point cloud completion networks, which generate the overall
shape of the point cloud from the incomplete point cloud and always change
existing points and encounter noise and geometrical loss, PF-Net preserves the
spatial arrangements of the incomplete point cloud and can figure out the
detailed geometrical structure of the missing region(s) in the prediction. To
succeed at this task, PF-Net estimates the missing point cloud hierarchically
by utilizing a feature-points-based multi-scale generating network. Further, we
add up multi-stage completion loss and adversarial loss to generate more
realistic missing region(s). The adversarial loss can better tackle multiple
modes in the prediction. Our experiments demonstrate the effectiveness of our
method for several challenging point cloud completion tasks.
Related papers
- PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - PMP-Net++: Point Cloud Completion by Transformer-Enhanced Multi-step
Point Moving Paths [60.32185890237936]
We design a novel neural network, named PMP-Net++, to mimic behavior of an earth mover.
It moves each point of incomplete input to obtain a complete point cloud, where total distance of point moving paths (PMPs) should be the shortest.
The network learns a strict and unique correspondence on point-level, and thus improves quality of predicted complete shape.
arXiv Detail & Related papers (2022-02-19T03:00:40Z) - Point cloud completion on structured feature map with feedback network [28.710494879042002]
We propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map.
A 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud.
A point cloud upsampling network is used to generate dense point cloud from the partial input and the coarse intermediate output.
arXiv Detail & Related papers (2022-02-17T10:59:40Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
Real-scanned 3D point clouds are often incomplete, and it is important to recover complete point clouds for downstream applications.
Most existing point cloud completion methods use Chamfer Distance (CD) loss for training.
We propose a novel Point Diffusion-Refinement (PDR) paradigm for point cloud completion.
arXiv Detail & Related papers (2021-12-07T06:59:06Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
We design a novel neural network, named PMP-Net, to mimic the behavior of an earth mover.
It moves each point of the incomplete input to complete the point cloud, where the total distance of point moving paths should be shortest.
It learns a strict and unique correspondence on point-level, which can capture the detailed topology and structure relationships between the incomplete shape and the complete target.
arXiv Detail & Related papers (2020-12-07T01:34:38Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
We propose Skip-Attention Network (SA-Net) for 3D point cloud completion.
First, we propose a skip-attention mechanism to effectively exploit the local structure details of incomplete point clouds.
Second, in order to fully utilize the selected geometric information encoded by skip-attention mechanism at different resolutions, we propose a novel structure-preserving decoder.
arXiv Detail & Related papers (2020-05-08T06:23:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.