Stochastically Differentiable Probabilistic Programs
- URL: http://arxiv.org/abs/2003.00704v2
- Date: Thu, 5 Mar 2020 14:06:30 GMT
- Title: Stochastically Differentiable Probabilistic Programs
- Authors: David Tolpin, Yuan Zhou, Hongseok Yang
- Abstract summary: The existence of discrete random variables prohibits many basic gradient-based inference engines.
We present a novel approach to run inference efficiently and robustly in such programs using Markov Chain Monte Carlo family of algorithms.
- Score: 18.971852464650144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic programs with mixed support (both continuous and discrete
latent random variables) commonly appear in many probabilistic programming
systems (PPSs). However, the existence of the discrete random variables
prohibits many basic gradient-based inference engines, which makes the
inference procedure on such models particularly challenging. Existing PPSs
either require the user to manually marginalize out the discrete variables or
to perform a composing inference by running inference separately on discrete
and continuous variables. The former is infeasible in most cases whereas the
latter has some fundamental shortcomings. We present a novel approach to run
inference efficiently and robustly in such programs using stochastic gradient
Markov Chain Monte Carlo family of algorithms. We compare our stochastic
gradient-based inference algorithm against conventional baselines in several
important cases of probabilistic programs with mixed support, and demonstrate
that it outperforms existing composing inference baselines and works almost as
well as inference in marginalized versions of the programs, but with less
programming effort and at a lower computation cost.
Related papers
- Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
We focus on optimisation programming (SP), Optimal Control (SOC) and Decision Processes (MDP)
Recent progress in solving convex multistage Markov problems is based on cutting planes approximations of the cost-to-go functions of dynamic programming equations.
Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables.
arXiv Detail & Related papers (2023-03-28T01:30:40Z) - $\omega$PAP Spaces: Reasoning Denotationally About Higher-Order,
Recursive Probabilistic and Differentiable Programs [64.25762042361839]
$omega$PAP spaces are spaces for reasoning denotationally about expressive differentiable and probabilistic programming languages.
Our semantics is general enough to assign meanings to most practical probabilistic and differentiable programs.
We establish the almost-everywhere differentiability of probabilistic programs' trace density functions.
arXiv Detail & Related papers (2023-02-21T12:50:05Z) - Training and Inference on Any-Order Autoregressive Models the Right Way [97.39464776373902]
A family of Any-Order Autoregressive Models (AO-ARMs) has shown breakthrough performance in arbitrary conditional tasks.
We identify significant improvements to be made to previous formulations of AO-ARMs.
Our method leads to improved performance with no compromises on tractability.
arXiv Detail & Related papers (2022-05-26T18:00:02Z) - Program Analysis of Probabilistic Programs [3.299672391663527]
dissertation presents three novel techniques to improve probabilistic programming using program analysis.
The techniques analyse a probabilistic program and adapt it to make inference more efficient, sometimes in a way that would have been tedious or impossible to do by hand.
arXiv Detail & Related papers (2022-04-14T10:40:54Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - flip-hoisting: Exploiting Repeated Parameters in Discrete Probabilistic
Programs [25.320181572646135]
We present a program analysis and associated optimization, flip-hoisting, that collapses repetitious parameters in discrete probabilistic programs to improve inference performance.
We implement flip-hoisting in an existing probabilistic programming language and show empirically that it significantly improves inference performance.
arXiv Detail & Related papers (2021-10-19T22:04:26Z) - Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators [100.58924375509659]
Straight-through (ST) estimator gained popularity due to its simplicity and efficiency.
Several techniques were proposed to improve over ST while keeping the same low computational complexity.
We conduct a theoretical analysis of Bias and Variance of these methods in order to understand tradeoffs and verify originally claimed properties.
arXiv Detail & Related papers (2021-10-07T15:16:07Z) - Generating Random Logic Programs Using Constraint Programming [12.47276164048813]
We present a novel approach to generating random logic programs using constraint programming.
We show how the model scales with parameter values, and use the model to compare probabilistic inference algorithms across a range of synthetic problems.
arXiv Detail & Related papers (2020-06-02T19:12:53Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Stochastic Probabilistic Programs [1.90365714903665]
We introduce the notion of a probabilistic program and present a reference implementation of a probabilistic programming facility supporting specification of programs and inference in them.
We give several examples of probabilistic programs, and compare the programs with corresponding deterministic probabilistic programs in terms of model specification and inference.
arXiv Detail & Related papers (2020-01-08T17:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.