Batch Stationary Distribution Estimation
- URL: http://arxiv.org/abs/2003.00722v1
- Date: Mon, 2 Mar 2020 09:10:01 GMT
- Title: Batch Stationary Distribution Estimation
- Authors: Junfeng Wen, Bo Dai, Lihong Li, Dale Schuurmans
- Abstract summary: We consider the problem of approximating the stationary distribution of an ergodic Markov chain given a set of sampled transitions.
We propose a consistent estimator that is based on recovering a correction ratio function over the given data.
- Score: 98.18201132095066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of approximating the stationary distribution of an
ergodic Markov chain given a set of sampled transitions. Classical
simulation-based approaches assume access to the underlying process so that
trajectories of sufficient length can be gathered to approximate stationary
sampling. Instead, we consider an alternative setting where a fixed set of
transitions has been collected beforehand, by a separate, possibly unknown
procedure. The goal is still to estimate properties of the stationary
distribution, but without additional access to the underlying system. We
propose a consistent estimator that is based on recovering a correction ratio
function over the given data. In particular, we develop a variational power
method (VPM) that provides provably consistent estimates under general
conditions. In addition to unifying a number of existing approaches from
different subfields, we also find that VPM yields significantly better
estimates across a range of problems, including queueing, stochastic
differential equations, post-processing MCMC, and off-policy evaluation.
Related papers
- Conditional Sampling of Variational Autoencoders via Iterated
Approximate Ancestral Sampling [7.357511266926065]
Conditional sampling of variational autoencoders (VAEs) is needed in various applications, such as missing data imputation, but is computationally intractable.
A principled choice forally exact conditional sampling is Metropolis-within-Gibbs (MWG)
arXiv Detail & Related papers (2023-08-17T16:08:18Z) - Positive definite nonparametric regression using an evolutionary
algorithm with application to covariance function estimation [0.0]
We propose a novel nonparametric regression framework for estimating covariance functions of stationary processes.
Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators.
Our method provides more reliable estimates for long-range dependence.
arXiv Detail & Related papers (2023-04-25T22:01:14Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
We present a minimax lower bound on the discounted mean estimation problem.
We show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties.
arXiv Detail & Related papers (2023-04-11T09:13:17Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
We propose a probabilistic paradigm to estimate a diverse set of counterfactuals.
We treat the perturbations as random variables endowed with prior distribution functions.
A gradient based sampler with superior convergence characteristics efficiently computes the posterior samples.
arXiv Detail & Related papers (2023-01-21T00:21:11Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Universal Off-Policy Evaluation [64.02853483874334]
We take the first steps towards a universal off-policy estimator (UnO)
We use UnO for estimating and simultaneously bounding the mean, variance, quantiles/median, inter-quantile range, CVaR, and the entire cumulative distribution of returns.
arXiv Detail & Related papers (2021-04-26T18:54:31Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.