A Robust Functional EM Algorithm for Incomplete Panel Count Data
- URL: http://arxiv.org/abs/2003.01169v3
- Date: Sat, 20 Jun 2020 02:34:52 GMT
- Title: A Robust Functional EM Algorithm for Incomplete Panel Count Data
- Authors: Alexander Moreno, Zhenke Wu, Jamie Yap, David Wetter, Cho Lam, Inbal
Nahum-Shani, Walter Dempsey, James M. Rehg
- Abstract summary: We propose a functional EM algorithm to estimate the counting process mean function under a missing completely at random assumption (MCAR)
The proposed algorithm wraps several popular panel count inference methods, seamlessly deals with incomplete counts and is robust to misspecification of the Poisson process assumption.
We illustrate the utility of the proposed algorithm through numerical experiments and an analysis of smoking cessation data.
- Score: 66.07942227228014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Panel count data describes aggregated counts of recurrent events observed at
discrete time points. To understand dynamics of health behaviors, the field of
quantitative behavioral research has evolved to increasingly rely upon panel
count data collected via multiple self reports, for example, about frequencies
of smoking using in-the-moment surveys on mobile devices. However, missing
reports are common and present a major barrier to downstream statistical
learning. As a first step, under a missing completely at random assumption
(MCAR), we propose a simple yet widely applicable functional EM algorithm to
estimate the counting process mean function, which is of central interest to
behavioral scientists. The proposed approach wraps several popular panel count
inference methods, seamlessly deals with incomplete counts and is robust to
misspecification of the Poisson process assumption. Theoretical analysis of the
proposed algorithm provides finite-sample guarantees by expanding parametric EM
theory to our general non-parametric setting. We illustrate the utility of the
proposed algorithm through numerical experiments and an analysis of smoking
cessation data. We also discuss useful extensions to address deviations from
the MCAR assumption and covariate effects.
Related papers
- High-dimensional prediction for count response via sparse exponential weights [0.0]
This paper introduces a novel probabilistic machine learning framework for high-dimensional count data prediction.
A key contribution is a novel risk measure tailored to count data prediction, with theoretical guarantees for prediction risk using PAC-Bayesian bounds.
Our results include non-asymptotic oracle inequalities, demonstrating rate-optimal prediction error without prior knowledge of sparsity.
arXiv Detail & Related papers (2024-10-20T12:45:42Z) - Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs [6.96958458974878]
Event knowledge graphs (EKG) capture multiple, interacting views of a process execution.
We tackle the open problem of EKG discovery from uncurated data.
We derive an EKG discovery algorithm based on statistical inference.
arXiv Detail & Related papers (2024-10-08T14:12:51Z) - An Evaluation of Real-time Adaptive Sampling Change Point Detection Algorithm using KCUSUM [4.610597418629838]
We introduce the Kernel-based Cumulative Sum (KCUSUM) algorithm, a non-parametric extension of the traditional Cumulative Sum (CUSUM) method.
KCUSUM splits itself by comparing incoming samples directly with reference samples and computes a statistic grounded in the Maximum Mean Discrepancy (MMD) non-parametric framework.
We discuss real-world use cases from scientific simulations such as NWChem CODAR and protein folding data, demonstrating KCUSUM's practical effectiveness in online change point detection.
arXiv Detail & Related papers (2024-02-15T19:45:24Z) - Entrywise Inference for Missing Panel Data: A Simple and Instance-Optimal Approach [27.301741710016223]
We consider inferential questions associated with the missing data version of panel data induced by staggered adoption.
We develop and analyze a data-driven procedure for constructing entrywise confidence intervals with pre-specified coverage.
We prove non-asymptotic and high-probability bounds on its error in estimating each missing entry.
arXiv Detail & Related papers (2024-01-24T18:58:18Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Nonparametric estimation of continuous DPPs with kernel methods [0.0]
Parametric and nonparametric inference methods have been proposed in the finite case, i.e. when the point patterns live in a finite ground set.
We show that a restricted version of this maximum likelihood (MLE) problem falls within the scope of a recent representer theorem for nonnegative functions in an RKHS.
We propose, analyze, and demonstrate a fixed point algorithm to solve this finite-dimensional problem.
arXiv Detail & Related papers (2021-06-27T11:57:14Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Approximate MMAP by Marginal Search [78.50747042819503]
We present a strategy for marginal MAP queries in graphical models.
The proposed confidence measure is properly detecting instances for which the algorithm is accurate.
For sufficiently high confidence levels, the algorithm gives the exact solution or an approximation whose Hamming distance from the exact one is small.
arXiv Detail & Related papers (2020-02-12T07:41:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.