Optimal Regularization Can Mitigate Double Descent
- URL: http://arxiv.org/abs/2003.01897v2
- Date: Thu, 29 Apr 2021 04:45:47 GMT
- Title: Optimal Regularization Can Mitigate Double Descent
- Authors: Preetum Nakkiran, Prayaag Venkat, Sham Kakade, Tengyu Ma
- Abstract summary: We study whether the double-descent phenomenon can be avoided by using optimal regularization.
We demonstrate empirically that optimally-tuned $ell$ regularization can double descent for more general models, including neural networks.
- Score: 29.414119906479954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent empirical and theoretical studies have shown that many learning
algorithms -- from linear regression to neural networks -- can have test
performance that is non-monotonic in quantities such the sample size and model
size. This striking phenomenon, often referred to as "double descent", has
raised questions of if we need to re-think our current understanding of
generalization. In this work, we study whether the double-descent phenomenon
can be avoided by using optimal regularization. Theoretically, we prove that
for certain linear regression models with isotropic data distribution,
optimally-tuned $\ell_2$ regularization achieves monotonic test performance as
we grow either the sample size or the model size. We also demonstrate
empirically that optimally-tuned $\ell_2$ regularization can mitigate double
descent for more general models, including neural networks. Our results suggest
that it may also be informative to study the test risk scalings of various
algorithms in the context of appropriately tuned regularization.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - The Surprising Harmfulness of Benign Overfitting for Adversarial
Robustness [13.120373493503772]
We prove a surprising result that even if the ground truth itself is robust to adversarial examples, the benignly overfitted model is benign in terms of the standard'' out-of-sample risk objective.
Our finding provides theoretical insights into the puzzling phenomenon observed in practice, where the true target function (e.g., human) is robust against adverasrial attack, while beginly overfitted neural networks lead to models that are not robust.
arXiv Detail & Related papers (2024-01-19T15:40:46Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
We study the phenomenon of "double descent" of the generalization error.
We find that double descent can be attributed to distinct features being learned at different scales.
arXiv Detail & Related papers (2021-12-06T18:17:08Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Nonasymptotic theory for two-layer neural networks: Beyond the
bias-variance trade-off [10.182922771556742]
We present a nonasymptotic generalization theory for two-layer neural networks with ReLU activation function.
We show that overparametrized random feature models suffer from the curse of dimensionality and thus are suboptimal.
arXiv Detail & Related papers (2021-06-09T03:52:18Z) - Optimization Variance: Exploring Generalization Properties of DNNs [83.78477167211315]
The test error of a deep neural network (DNN) often demonstrates double descent.
We propose a novel metric, optimization variance (OV), to measure the diversity of model updates.
arXiv Detail & Related papers (2021-06-03T09:34:17Z) - The Predictive Normalized Maximum Likelihood for Over-parameterized
Linear Regression with Norm Constraint: Regret and Double Descent [12.929639356256928]
We show that modern machine learning models do not obey a trade-off between the complexity of a prediction rule and its ability to generalize.
We use the recently proposed predictive normalized maximum likelihood (pNML) which is the min-max regret solution for individual data.
We demonstrate the use of the pNML regret as a point-wise learnability measure on synthetic data and that it can successfully predict the double-decent phenomenon.
arXiv Detail & Related papers (2021-02-14T15:49:04Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well.
An emerging paradigm for describing this unexpected behavior is in terms of a emphdouble descent curve.
We provide a precise high-dimensional analysis of generalization with the Neural Tangent Kernel, which characterizes the behavior of wide neural networks with gradient descent.
arXiv Detail & Related papers (2020-08-15T20:55:40Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.