Posterior-GAN: Towards Informative and Coherent Response Generation with
Posterior Generative Adversarial Network
- URL: http://arxiv.org/abs/2003.02020v1
- Date: Wed, 4 Mar 2020 11:57:53 GMT
- Title: Posterior-GAN: Towards Informative and Coherent Response Generation with
Posterior Generative Adversarial Network
- Authors: Shaoxiong Feng, Hongshen Chen, Kan Li, Dawei Yin
- Abstract summary: We propose a novel encoder-decoder based generative adversarial learning framework, Posterior Generative Adversarial Network (Posterior-GAN)
Experimental results demonstrate that our method effectively boosts the informativeness and coherence of the generated response on both automatic and human evaluation.
- Score: 38.576579498740244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural conversational models learn to generate responses by taking into
account the dialog history. These models are typically optimized over the
query-response pairs with a maximum likelihood estimation objective. However,
the query-response tuples are naturally loosely coupled, and there exist
multiple responses that can respond to a given query, which leads the
conversational model learning burdensome. Besides, the general dull response
problem is even worsened when the model is confronted with meaningless response
training instances. Intuitively, a high-quality response not only responds to
the given query but also links up to the future conversations, in this paper,
we leverage the query-response-future turn triples to induce the generated
responses that consider both the given context and the future conversations. To
facilitate the modeling of these triples, we further propose a novel
encoder-decoder based generative adversarial learning framework, Posterior
Generative Adversarial Network (Posterior-GAN), which consists of a forward and
a backward generative discriminator to cooperatively encourage the generated
response to be informative and coherent by two complementary assessment
perspectives. Experimental results demonstrate that our method effectively
boosts the informativeness and coherence of the generated response on both
automatic and human evaluation, which verifies the advantages of considering
two assessment perspectives.
Related papers
- Multi-party Response Generation with Relation Disentanglement [8.478506896774137]
Existing neural response generation models have achieved impressive improvements for two-party conversations.
However, many real-world dialogues involve multiple interlocutors and the structure of conversational context is much more complex.
We propose to automatically infer the relations via relational thinking on subtle clues inside the conversation context without any human label.
arXiv Detail & Related papers (2024-03-16T06:33:44Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - Promoting Open-domain Dialogue Generation through Learning Pattern
Information between Contexts and Responses [5.936682548344234]
This paper improves the quality of generated responses by learning the implicit pattern information between contexts and responses in the training samples.
We also design a response-aware mechanism for mining the implicit pattern information between contexts and responses so that the generated replies are more diverse and approximate to human replies.
arXiv Detail & Related papers (2023-09-06T08:11:39Z) - Reranking Overgenerated Responses for End-to-End Task-Oriented Dialogue
Systems [71.33737787564966]
End-to-end (E2E) task-oriented dialogue (ToD) systems are prone to fall into the so-called 'likelihood trap'
We propose a reranking method which aims to select high-quality items from the lists of responses initially overgenerated by the system.
Our methods improve a state-of-the-art E2E ToD system by 2.4 BLEU, 3.2 ROUGE, and 2.8 METEOR scores, achieving new peak results.
arXiv Detail & Related papers (2022-11-07T15:59:49Z) - Improving Response Quality with Backward Reasoning in Open-domain
Dialogue Systems [53.160025961101354]
We propose to train the generation model in a bidirectional manner by adding a backward reasoning step to the vanilla encoder-decoder training.
The proposed backward reasoning step pushes the model to produce more informative and coherent content.
Our method can improve response quality without introducing side information.
arXiv Detail & Related papers (2021-04-30T20:38:27Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - EnsembleGAN: Adversarial Learning for Retrieval-Generation Ensemble
Model on Short-Text Conversation [37.80290058812499]
ensembleGAN is an adversarial learning framework for enhancing a retrieval-generation ensemble model in open-domain conversation scenario.
It consists of a language-model-like generator, a ranker generator, and one ranker discriminator.
arXiv Detail & Related papers (2020-04-30T05:59:12Z) - Counterfactual Off-Policy Training for Neural Response Generation [94.76649147381232]
We propose to explore potential responses by counterfactual reasoning.
Training on the counterfactual responses under the adversarial learning framework helps to explore the high-reward area of the potential response space.
An empirical study on the DailyDialog dataset shows that our approach significantly outperforms the HRED model.
arXiv Detail & Related papers (2020-04-29T22:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.