On Hyper-parameter Tuning for Stochastic Optimization Algorithms
- URL: http://arxiv.org/abs/2003.02038v2
- Date: Tue, 10 Mar 2020 16:32:23 GMT
- Title: On Hyper-parameter Tuning for Stochastic Optimization Algorithms
- Authors: Haotian Zhang, Jianyong Sun and Zongben Xu
- Abstract summary: This paper proposes the first-ever algorithmic framework for tuning hyper-parameters of optimization algorithm based on reinforcement learning.
The proposed framework can be used as a standard tool for hyper-parameter tuning in algorithms.
- Score: 28.88646928299302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes the first-ever algorithmic framework for tuning
hyper-parameters of stochastic optimization algorithm based on reinforcement
learning. Hyper-parameters impose significant influences on the performance of
stochastic optimization algorithms, such as evolutionary algorithms (EAs) and
meta-heuristics. Yet, it is very time-consuming to determine optimal
hyper-parameters due to the stochastic nature of these algorithms. We propose
to model the tuning procedure as a Markov decision process, and resort the
policy gradient algorithm to tune the hyper-parameters. Experiments on tuning
stochastic algorithms with different kinds of hyper-parameters (continuous and
discrete) for different optimization problems (continuous and discrete) show
that the proposed hyper-parameter tuning algorithms do not require much less
running times of the stochastic algorithms than bayesian optimization method.
The proposed framework can be used as a standard tool for hyper-parameter
tuning in stochastic algorithms.
Related papers
- Cross-Entropy Optimization for Hyperparameter Optimization in Stochastic Gradient-based Approaches to Train Deep Neural Networks [2.1046873879077794]
We present a cross-entropy optimization method for hyperparameter optimization of a learning algorithm.
The presented method can be applied to other areas of optimization problems in deep learning.
arXiv Detail & Related papers (2024-09-14T00:39:37Z) - Hyperparameter Adaptive Search for Surrogate Optimization: A
Self-Adjusting Approach [1.6317061277457001]
Surrogate optimization (SO) algorithms have shown promise for optimizing expensive black-box functions.
Our approach identifies and modifies the most influential hyper parameters specific to each problem and SO approach.
Experimental results demonstrate the effectiveness of HASSO in enhancing the performance of various SO algorithms.
arXiv Detail & Related papers (2023-10-12T01:26:05Z) - Review of Parameter Tuning Methods for Nature-Inspired Algorithms [1.4042211166197214]
This chapter reviews some of the main methods for parameter tuning and highlights the important issues concerning the latest development in parameter tuning.
A few open problems are also discussed with some recommendations for future research.
arXiv Detail & Related papers (2023-08-30T11:41:39Z) - Hyper-parameter optimization based on soft actor critic and hierarchical
mixture regularization [5.063728016437489]
We model hyper- parameter optimization process as a Markov decision process, and tackle it with reinforcement learning.
A novel hyper- parameter optimization method based on soft actor critic and hierarchical mixture regularization has been proposed.
arXiv Detail & Related papers (2021-12-08T02:34:43Z) - HyP-ABC: A Novel Automated Hyper-Parameter Tuning Algorithm Using
Evolutionary Optimization [1.6114012813668934]
We propose HyP-ABC, an automatic hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach.
Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned.
arXiv Detail & Related papers (2021-09-11T16:45:39Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.