Pruning Filters while Training for Efficiently Optimizing Deep Learning
Networks
- URL: http://arxiv.org/abs/2003.02800v1
- Date: Thu, 5 Mar 2020 18:05:17 GMT
- Title: Pruning Filters while Training for Efficiently Optimizing Deep Learning
Networks
- Authors: Sourjya Roy, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Anand
Raghunathan
- Abstract summary: Pruning techniques have been proposed that remove less significant weights in deep networks.
We propose a dynamic pruning-while-training procedure, wherein we prune filters of a deep network during training itself.
Results indicate that pruning while training yields a compressed network with almost no accuracy loss after pruning 50% of the filters.
- Score: 6.269700080380206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern deep networks have millions to billions of parameters, which leads to
high memory and energy requirements during training as well as during inference
on resource-constrained edge devices. Consequently, pruning techniques have
been proposed that remove less significant weights in deep networks, thereby
reducing their memory and computational requirements. Pruning is usually
performed after training the original network, and is followed by further
retraining to compensate for the accuracy loss incurred during pruning. The
prune-and-retrain procedure is repeated iteratively until an optimum tradeoff
between accuracy and efficiency is reached. However, such iterative retraining
adds to the overall training complexity of the network. In this work, we
propose a dynamic pruning-while-training procedure, wherein we prune filters of
the convolutional layers of a deep network during training itself, thereby
precluding the need for separate retraining. We evaluate our dynamic
pruning-while-training approach with three different pre-existing pruning
strategies, viz. mean activation-based pruning, random pruning, and L1
normalization-based pruning. Our results for VGG-16 trained on CIFAR10 shows
that L1 normalization provides the best performance among all the techniques
explored in this work with less than 1% drop in accuracy after pruning 80% of
the filters compared to the original network. We further evaluated the L1
normalization based pruning mechanism on CIFAR100. Results indicate that
pruning while training yields a compressed network with almost no accuracy loss
after pruning 50% of the filters compared to the original network and ~5% loss
for high pruning rates (>80%). The proposed pruning methodology yields 41%
reduction in the number of computations and memory accesses during training for
CIFAR10, CIFAR100 and ImageNet compared to training with retraining for 10
epochs .
Related papers
- Learning a Consensus Sub-Network with Polarization Regularization and
One Pass Training [3.2214522506924093]
Pruning schemes create extra overhead either by iterative training and fine-tuning for static pruning or repeated computation of a dynamic pruning graph.
We propose a new parameter pruning strategy for learning a lighter-weight sub-network that minimizes the energy cost while maintaining comparable performance to the fully parameterised network on given downstream tasks.
Our results on CIFAR-10 and CIFAR-100 suggest that our scheme can remove 50% of connections in deep networks with less than 1% reduction in classification accuracy.
arXiv Detail & Related papers (2023-02-17T09:37:17Z) - Trainability Preserving Neural Structured Pruning [64.65659982877891]
We present trainability preserving pruning (TPP), a regularization-based structured pruning method that can effectively maintain trainability during sparsification.
TPP can compete with the ground-truth dynamical isometry recovery method on linear networks.
It delivers encouraging performance in comparison to many top-performing filter pruning methods.
arXiv Detail & Related papers (2022-07-25T21:15:47Z) - End-to-End Sensitivity-Based Filter Pruning [49.61707925611295]
We present a sensitivity-based filter pruning algorithm (SbF-Pruner) to learn the importance scores of filters of each layer end-to-end.
Our method learns the scores from the filter weights, enabling it to account for the correlations between the filters of each layer.
arXiv Detail & Related papers (2022-04-15T10:21:05Z) - Back to Basics: Efficient Network Compression via IMP [22.586474627159287]
Iterative Magnitude Pruning (IMP) is one of the most established approaches for network pruning.
IMP is often argued that it reaches suboptimal states by not incorporating sparsification into the training phase.
We find that IMP with SLR for retraining can outperform state-of-the-art pruning-during-training approaches.
arXiv Detail & Related papers (2021-11-01T11:23:44Z) - Pruning with Compensation: Efficient Channel Pruning for Deep
Convolutional Neural Networks [0.9712140341805068]
A highly efficient pruning method is proposed to significantly reduce the cost of pruning DCNN.
Our method shows competitive pruning performance among the state-of-the-art retraining-based pruning methods.
arXiv Detail & Related papers (2021-08-31T10:17:36Z) - Sparse Training via Boosting Pruning Plasticity with Neuroregeneration [79.78184026678659]
We study the effect of pruning throughout training from the perspective of pruning plasticity.
We design a novel gradual magnitude pruning (GMP) method, named gradual pruning with zero-cost neuroregeneration (GraNet) and its dynamic sparse training (DST) variant (GraNet-ST)
Perhaps most impressively, the latter for the first time boosts the sparse-to-sparse training performance over various dense-to-sparse methods by a large margin with ResNet-50 on ImageNet.
arXiv Detail & Related papers (2021-06-19T02:09:25Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
A common limitation of most existing pruning techniques is that they require pre-training of the network at least once before pruning.
We propose STAMP, which task-adaptively prunes a network pretrained on a large reference dataset by generating a pruning mask on it as a function of the target dataset.
We validate STAMP against recent advanced pruning methods on benchmark datasets.
arXiv Detail & Related papers (2020-06-22T10:57:43Z) - Picking Winning Tickets Before Training by Preserving Gradient Flow [9.67608102763644]
We argue that efficient training requires preserving the gradient flow through the network.
We empirically investigate the effectiveness of the proposed method with extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and ImageNet.
arXiv Detail & Related papers (2020-02-18T05:14:47Z) - Activation Density driven Energy-Efficient Pruning in Training [2.222917681321253]
We propose a novel pruning method that prunes a network real-time during training.
We obtain exceedingly sparse networks with accuracy comparable to the baseline network.
arXiv Detail & Related papers (2020-02-07T18:34:31Z) - Filter Sketch for Network Pruning [184.41079868885265]
We propose a novel network pruning approach by information preserving of pre-trained network weights (filters)
Our approach, referred to as FilterSketch, encodes the second-order information of pre-trained weights.
Experiments on CIFAR-10 show that FilterSketch reduces 63.3% of FLOPs and prunes 59.9% of network parameters with negligible accuracy cost.
arXiv Detail & Related papers (2020-01-23T13:57:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.