Modeling of Spatio-Temporal Hawkes Processes with Randomized Kernels
- URL: http://arxiv.org/abs/2003.03671v2
- Date: Mon, 15 Feb 2021 19:04:45 GMT
- Title: Modeling of Spatio-Temporal Hawkes Processes with Randomized Kernels
- Authors: Fatih Ilhan, Suleyman Serdar Kozat
- Abstract summary: Inferring the dynamics of event processes hasly practical applications including crime prediction, and traffic forecasting.
We introduce on social-temporal Hawkes processes that are commonly used due to their capability to capture excitations between event occurrences.
We replace the spatial kernel calculations by randomized transformations and gradient descent to learn the process.
- Score: 15.556686221927501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate spatio-temporal event analysis using point processes.
Inferring the dynamics of event sequences spatiotemporally has many practical
applications including crime prediction, social media analysis, and traffic
forecasting. In particular, we focus on spatio-temporal Hawkes processes that
are commonly used due to their capability to capture excitations between event
occurrences. We introduce a novel inference framework based on randomized
transformations and gradient descent to learn the process. We replace the
spatial kernel calculations by randomized Fourier feature-based
transformations. The introduced randomization by this representation provides
flexibility while modeling the spatial excitation between events. Moreover, the
system described by the process is expressed within closed-form in terms of
scalable matrix operations. During the optimization, we use maximum likelihood
estimation approach and gradient descent while properly handling positivity and
orthonormality constraints. The experiment results show the improvements
achieved by the introduced method in terms of fitting capability in synthetic
and real datasets with respect to the conventional inference methods in the
spatio-temporal Hawkes process literature. We also analyze the triggering
interactions between event types and how their dynamics change in space and
time through the interpretation of learned parameters.
Related papers
- Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
We propose a fully Bayesian approach that treats the kernel hyper parameters as random variables and constructs coupled differential equations (SDEs) to learn their posterior distribution and that of inducing points.
Our approach provides a time-varying, comprehensive, and realistic posterior approximation through coupling variables using SDE methods.
Our work opens up exciting research avenues for advancing Bayesian inference and offers a powerful modeling tool for continuous-time Gaussian processes.
arXiv Detail & Related papers (2024-08-12T11:41:07Z) - Logistic-beta processes for dependent random probabilities with beta marginals [58.91121576998588]
We propose a novel process called the logistic-beta process, whose logistic transformation yields a process with common beta marginals.
It can model dependence on both discrete and continuous domains, such as space or time, and has a flexible dependence structure through correlation kernels.
We illustrate the benefits through nonparametric binary regression and conditional density estimation examples, both in simulation studies and in a pregnancy outcome application.
arXiv Detail & Related papers (2024-02-10T21:41:32Z) - Scalable and adaptive variational Bayes methods for Hawkes processes [4.580983642743026]
We propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes.
Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting.
arXiv Detail & Related papers (2022-12-01T05:35:32Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - On Contrastive Representations of Stochastic Processes [53.21653429290478]
Learning representations of processes is an emerging problem in machine learning.
We show that our methods are effective for learning representations of periodic functions, 3D objects and dynamical processes.
arXiv Detail & Related papers (2021-06-18T11:00:24Z) - Dynamic Hawkes Processes for Discovering Time-evolving Communities'
States behind Diffusion Processes [57.22860407362061]
We propose a novel Hawkes process model that is able to capture the underlying dynamics of community states behind the diffusion processes.
The proposed method, termed DHP, offers a flexible way to learn complex representations of the time-evolving communities' states.
arXiv Detail & Related papers (2021-05-24T08:35:48Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Hawkes Processes on Graphons [85.6759041284472]
We study Hawkes processes and their variants that are associated with Granger causality graphs.
We can generate the corresponding Hawkes processes and simulate event sequences.
We learn the proposed model by minimizing the hierarchical optimal transport distance between the generated event sequences and the observed ones.
arXiv Detail & Related papers (2021-02-04T17:09:50Z) - Spatio-temporal Sequence Prediction with Point Processes and
Self-organizing Decision Trees [0.0]
We study the partitioning-temporal prediction problem introduce a point-process-based prediction algorithm.
Our algorithm can jointly learn the spatial event and the interaction between these regions through a gradient-based optimization procedure.
We compare our approach with state-of-the-art deep learning-based approaches, where we achieve significant performance improvements.
arXiv Detail & Related papers (2020-06-25T14:04:55Z) - Prediction with Spatio-temporal Point Processes with Self Organizing
Decision Trees [0.0]
We introduce a novel approach to this problem.
Our approach is based on the Hawkes process, which is a non-stationary and self-exciting process.
We provide experimental results on real-life data.
arXiv Detail & Related papers (2020-03-07T20:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.