Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
- URL: http://arxiv.org/abs/2003.03778v1
- Date: Sun, 8 Mar 2020 13:08:34 GMT
- Title: Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
- Authors: Rapha\"el Dang-Nhu, Gagandeep Singh, Pavol Bielik, Martin Vechev
- Abstract summary: We develop an effective generation of adversarial attacks on neural models that output a sequence of probability distributions rather than a sequence of single values.
We demonstrate that our approach can successfully generate attacks with small input perturbations in two challenging tasks.
- Score: 7.305979446312823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop an effective generation of adversarial attacks on neural models
that output a sequence of probability distributions rather than a sequence of
single values. This setting includes the recently proposed deep probabilistic
autoregressive forecasting models that estimate the probability distribution of
a time series given its past and achieve state-of-the-art results in a diverse
set of application domains. The key technical challenge we address is
effectively differentiating through the Monte-Carlo estimation of statistics of
the joint distribution of the output sequence. Additionally, we extend prior
work on probabilistic forecasting to the Bayesian setting which allows
conditioning on future observations, instead of only on past observations. We
demonstrate that our approach can successfully generate attacks with small
input perturbations in two challenging tasks where robust decision making is
crucial: stock market trading and prediction of electricity consumption.
Related papers
- Conformalised Conditional Normalising Flows for Joint Prediction Regions in time series [7.200880964149064]
Conformal Prediction offers a powerful framework for quantifying uncertainty in machine learning models.
Applying conformal prediction to probabilistic generative models, such as Normalising Flows is not straightforward.
This work proposes a novel method to conformalise conditional normalising flows, specifically addressing the problem of obtaining prediction regions.
arXiv Detail & Related papers (2024-11-26T02:19:13Z) - Elucidating the Design Choice of Probability Paths in Flow Matching for Forecasting [44.24834367720476]
Flow matching has recently emerged as a powerful paradigm generative modeling.
We show that forecasting-temporal data with flow matching is highly sensitive to selection of the probability path model.
Motivated by this insight, we propose a novel probability path model to improve forecasting performance.
arXiv Detail & Related papers (2024-10-04T08:34:14Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Probabilistic Forecasting with Generative Networks via Scoring Rule
Minimization [5.5643498845134545]
We use generative neural networks to parametrize distributions on high-dimensional spaces by transforming draws from a latent variable.
We train generative networks to minimize a predictive-sequential (or prequential) scoring rule on a recorded temporal sequence of the phenomenon of interest.
Our method outperforms state-of-the-art adversarial approaches, especially in probabilistic calibration.
arXiv Detail & Related papers (2021-12-15T15:51:12Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic multivariate electricity price forecasting using implicit
generative ensemble post-processing [0.0]
We use a likelihood-free implicit generative model based on an ensemble of point forecasting models to generate multivariate electricity price scenarios.
Our ensemble post-processing method outperforms well-established model combination benchmarks.
As our method works on top of an ensemble of domain-specific expert models, it can readily be deployed to other forecasting tasks.
arXiv Detail & Related papers (2020-05-27T15:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.