BirdNet+: End-to-End 3D Object Detection in LiDAR Bird's Eye View
- URL: http://arxiv.org/abs/2003.04188v1
- Date: Mon, 9 Mar 2020 15:08:40 GMT
- Title: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird's Eye View
- Authors: Alejandro Barrera, Carlos Guindel, Jorge Beltr\'an and Fernando
Garc\'ia
- Abstract summary: On-board 3D object detection in autonomous vehicles often relies on geometry information captured by LiDAR devices.
We present a fully end-to-end 3D object detection framework that can infer oriented 3D boxes solely from BEV images.
- Score: 117.44028458220427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On-board 3D object detection in autonomous vehicles often relies on geometry
information captured by LiDAR devices. Albeit image features are typically
preferred for detection, numerous approaches take only spatial data as input.
Exploiting this information in inference usually involves the use of compact
representations such as the Bird's Eye View (BEV) projection, which entails a
loss of information and thus hinders the joint inference of all the parameters
of the objects' 3D boxes. In this paper, we present a fully end-to-end 3D
object detection framework that can infer oriented 3D boxes solely from BEV
images by using a two-stage object detector and ad-hoc regression branches,
eliminating the need for a post-processing stage. The method outperforms its
predecessor (BirdNet) by a large margin and obtains state-of-the-art results on
the KITTI 3D Object Detection Benchmark for all the categories in evaluation.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEV is a network that can be plugged into the BEV-based 3D object detection framework.
Our method achieves consistent improvements over the BEV-based baselines in terms of both average precision and nuScenes detection score.
arXiv Detail & Related papers (2023-01-13T06:02:31Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - A Versatile Multi-View Framework for LiDAR-based 3D Object Detection
with Guidance from Panoptic Segmentation [9.513467995188634]
3D object detection using LiDAR data is an indispensable component for autonomous driving systems.
We propose a novel multi-task framework that jointly performs 3D object detection and panoptic segmentation.
arXiv Detail & Related papers (2022-03-04T04:57:05Z) - DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries [43.02373021724797]
We introduce a framework for multi-camera 3D object detection.
Our method manipulates predictions directly in 3D space.
We achieve state-of-the-art performance on the nuScenes autonomous driving benchmark.
arXiv Detail & Related papers (2021-10-13T17:59:35Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - Single-Shot 3D Detection of Vehicles from Monocular RGB Images via
Geometry Constrained Keypoints in Real-Time [6.82446891805815]
We propose a novel 3D single-shot object detection method for detecting vehicles in monocular RGB images.
Our approach lifts 2D detections to 3D space by predicting additional regression and classification parameters.
We test our approach on different datasets for autonomous driving and evaluate it using the challenging KITTI 3D Object Detection and the novel nuScenes Object Detection benchmarks.
arXiv Detail & Related papers (2020-06-23T15:10:19Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.