Precise tuning of single-photon frequency using optical single sideband
modulator
- URL: http://arxiv.org/abs/2003.04486v1
- Date: Tue, 10 Mar 2020 01:21:30 GMT
- Title: Precise tuning of single-photon frequency using optical single sideband
modulator
- Authors: Hsin-Pin Lo, and Hiroki Takesue
- Abstract summary: We demonstrate a flexible scheme to interface different-color photons using an optical single sideband (OSSB) modulator.
We successfully erased the frequency distinguishability of non-degenerated photon pairs to obtain the Hong-Ou-Mandel interference with a visibility exceeding 90%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Frequency translation of single photons while preserving their quantum
characteristics is an important technology for flexible networking of photonic
quantum communication systems. Here we demonstrate a flexible scheme to
interface different-color photons using an optical single sideband (OSSB)
modulator. By changing the radio-frequency signal that drives the modulators,
we can easily shift and precisely tune the frequency of single photons. Using
the OSSB modulator, we successfully erased the frequency distinguishability of
non-degenerated photon pairs to obtain the Hong-Ou-Mandel interference with a
visibility exceeding 90%. We also demonstrated that the level of
distinguishability can be precisely controlled by the OSSB modulator. We expect
that the OSSB modulator will provide a simple and flexible photonic interface
for realizing advanced quantum information systems.
Related papers
- On-demand shaped photon emission based on a parametrically modulated qubit [14.88027830561737]
A single-rail and dual-rail time-bin shaped photon generator can act as a quantum interface of a point-to-point quantum network.
We develop an efficient photon field measurement setup based on the data stream processing of GPU.
The results demonstrate that our method is hardware efficient, simple to implement, and scalable.
arXiv Detail & Related papers (2024-05-02T16:53:54Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - On-chip generation and dynamic piezo-optomechanical rotation of single
photons [0.0]
integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform.
We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control.
In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz.
arXiv Detail & Related papers (2022-02-21T12:32:37Z) - Spectral control of nonclassical light using an integrated thin-film
lithium niobate modulator [5.119503410288866]
We demonstrate frequency shifting and bandwidth compression of nonclassical light using an integrated thin-film lithium niobate (TFLN) phase modulator.
We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range.
Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.
arXiv Detail & Related papers (2021-12-18T16:38:00Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.