Stochastic Coordinate Minimization with Progressive Precision for
Stochastic Convex Optimization
- URL: http://arxiv.org/abs/2003.05482v1
- Date: Wed, 11 Mar 2020 18:42:40 GMT
- Title: Stochastic Coordinate Minimization with Progressive Precision for
Stochastic Convex Optimization
- Authors: Sudeep Salgia, Qing Zhao, Sattar Vakili
- Abstract summary: A framework based on iterative coordinate minimization (CM) is developed for convex optimization.
We establish the optimal precision control and the resulting order-optimal regret performance.
The proposed algorithm is amenable to online implementation and inherits the scalability and parallelizability properties of CM for large-scale optimization.
- Score: 16.0251555430107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A framework based on iterative coordinate minimization (CM) is developed for
stochastic convex optimization. Given that exact coordinate minimization is
impossible due to the unknown stochastic nature of the objective function, the
crux of the proposed optimization algorithm is an optimal control of the
minimization precision in each iteration. We establish the optimal precision
control and the resulting order-optimal regret performance for strongly convex
and separably nonsmooth functions. An interesting finding is that the optimal
progression of precision across iterations is independent of the
low-dimensional CM routine employed, suggesting a general framework for
extending low-dimensional optimization routines to high-dimensional problems.
The proposed algorithm is amenable to online implementation and inherits the
scalability and parallelizability properties of CM for large-scale
optimization. Requiring only a sublinear order of message exchanges, it also
lends itself well to distributed computing as compared with the alternative
approach of coordinate gradient descent.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - An Alternative Graphical Lasso Algorithm for Precision Matrices [0.0]
We present a new/improved (dual-primal) DP-GLasso algorithm for estimating sparse precision matrices.
We show that the regularized normal log-likelihood naturally decouples into a sum of two easy to minimize convex functions one of which is a Lasso regression problem.
Our algorithm has the precision matrix as its optimization target right at the outset, and retains all the favorable properties of the DP-GLasso algorithm.
arXiv Detail & Related papers (2024-03-19T02:01:01Z) - Optimal Guarantees for Algorithmic Reproducibility and Gradient
Complexity in Convex Optimization [55.115992622028685]
Previous work suggests that first-order methods would need to trade-off convergence rate (gradient convergence rate) for better.
We demonstrate that both optimal complexity and near-optimal convergence guarantees can be achieved for smooth convex minimization and smooth convex-concave minimax problems.
arXiv Detail & Related papers (2023-10-26T19:56:52Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization [108.35402316802765]
We propose a new first-order optimization algorithm -- AcceleratedGradient-OptimisticGradient (AG-OG) Ascent.
We show that AG-OG achieves the optimal convergence rate (up to a constant) for a variety of settings.
We extend our algorithm to extend the setting and achieve the optimal convergence rate in both bi-SC-SC and bi-C-SC settings.
arXiv Detail & Related papers (2022-10-31T17:59:29Z) - Near-Optimal Algorithms for Making the Gradient Small in Stochastic
Minimax Optimization [14.719077076351377]
We study the problem of finding a near-stationary point for smooth minimax optimization.
We show that a novel algorithm called Recursive IteratioNRAIN achieves both convex-concave and strongly-concave cases.
arXiv Detail & Related papers (2022-08-11T16:55:26Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
We analyze algorithms for zeroth-order entropy composite objectives, focusing on dependence on dimensionality.
This is achieved by exploiting low dimensional structure of the decision set using the mirror descent method with an estimation alike function.
To improve the gradient, we replace the classic sampling method based on Rademacher and show that the mini-batch method copes with non-Eucli geometry.
arXiv Detail & Related papers (2022-08-09T07:36:25Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.