Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems
- URL: http://arxiv.org/abs/2003.06258v1
- Date: Fri, 13 Mar 2020 13:11:35 GMT
- Title: Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems
- Authors: Patrick Kn\"obelreiter and Christian Sormann and Alexander Shekhovtsov
and Friedrich Fraundorfer and Thomas Pock
- Abstract summary: We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
- Score: 83.98774574197613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been proposed by many researchers that combining deep neural networks
with graphical models can create more efficient and better regularized
composite models. The main difficulties in implementing this in practice are
associated with a discrepancy in suitable learning objectives as well as with
the necessity of approximations for the inference. In this work we take one of
the simplest inference methods, a truncated max-product Belief Propagation, and
add what is necessary to make it a proper component of a deep learning model:
We connect it to learning formulations with losses on marginals and compute the
backprop operation. This BP-Layer can be used as the final or an intermediate
block in convolutional neural networks (CNNs), allowing us to design a
hierarchical model composing BP inference and CNNs at different scale levels.
The model is applicable to a range of dense prediction problems, is
well-trainable and provides parameter-efficient and robust solutions in stereo,
optical flow and semantic segmentation.
Related papers
- Layer-wise Linear Mode Connectivity [52.6945036534469]
Averaging neural network parameters is an intuitive method for the knowledge of two independent models.
It is most prominently used in federated learning.
We analyse the performance of the models that result from averaging single, or groups.
arXiv Detail & Related papers (2023-07-13T09:39:10Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - PRANC: Pseudo RAndom Networks for Compacting deep models [22.793523211040682]
PRANC enables significant compaction of a deep model.
In this study, we employ PRANC to condense image classification models and compress images by compacting their associated implicit neural networks.
arXiv Detail & Related papers (2022-06-16T22:03:35Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Fully differentiable model discovery [0.0]
We propose an approach by combining neural network based surrogates with Sparse Bayesian Learning.
Our work expands PINNs to various types of neural network architectures, and connects neural network-based surrogates to the rich field of Bayesian parameter inference.
arXiv Detail & Related papers (2021-06-09T08:11:23Z) - Belief Propagation Neural Networks [103.97004780313105]
We introduce belief propagation neural networks (BPNNs)
BPNNs operate on factor graphs and generalize Belief propagation (BP)
We show that BPNNs converges 1.7x faster on Ising models while providing tighter bounds.
On challenging model counting problems, BPNNs compute estimates 100's of times faster than state-of-the-art handcrafted methods.
arXiv Detail & Related papers (2020-07-01T07:39:51Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
Causal modeling has been recognized as a potential solution to many challenging problems in machine learning (ML)
We describe how a recently proposed counterfactual approach can still be used to deconfound the feature representations learned by deep neural network (DNN) models.
arXiv Detail & Related papers (2020-04-20T17:37:36Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.