Certified Defenses for Adversarial Patches
- URL: http://arxiv.org/abs/2003.06693v2
- Date: Fri, 25 Sep 2020 15:51:40 GMT
- Title: Certified Defenses for Adversarial Patches
- Authors: Ping-Yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen Zhu, Christoph
Studer, Tom Goldstein
- Abstract summary: Adversarial patch attacks are among the most practical threat models against real-world computer vision systems.
This paper studies certified and empirical defenses against patch attacks.
- Score: 72.65524549598126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial patch attacks are among one of the most practical threat models
against real-world computer vision systems. This paper studies certified and
empirical defenses against patch attacks. We begin with a set of experiments
showing that most existing defenses, which work by pre-processing input images
to mitigate adversarial patches, are easily broken by simple white-box
adversaries. Motivated by this finding, we propose the first certified defense
against patch attacks, and propose faster methods for its training.
Furthermore, we experiment with different patch shapes for testing, obtaining
surprisingly good robustness transfer across shapes, and present preliminary
results on certified defense against sparse attacks. Our complete
implementation can be found on:
https://github.com/Ping-C/certifiedpatchdefense.
Related papers
- Fight Fire with Fire: Combating Adversarial Patch Attacks using Pattern-randomized Defensive Patches [12.329244399788669]
Object detection is susceptible to adversarial patch attacks.
In this paper, we propose a novel and general methodology for defending adversarial attacks.
Two types of defensive patches, canary and woodpecker, are specially-crafted and injected into the model input to proactively probe or counteract potential adversarial patches.
arXiv Detail & Related papers (2023-11-10T15:36:57Z) - Hindering Adversarial Attacks with Multiple Encrypted Patch Embeddings [13.604830818397629]
We propose a new key-based defense focusing on both efficiency and robustness.
We build upon the previous defense with two major improvements: (1) efficient training and (2) optional randomization.
Experiments were carried out on the ImageNet dataset, and the proposed defense was evaluated against an arsenal of state-of-the-art attacks.
arXiv Detail & Related papers (2023-09-04T14:08:34Z) - The Best Defense is a Good Offense: Adversarial Augmentation against
Adversarial Attacks [91.56314751983133]
$A5$ is a framework to craft a defensive perturbation to guarantee that any attack towards the input in hand will fail.
We show effective on-the-fly defensive augmentation with a robustifier network that ignores the ground truth label.
We also show how to apply $A5$ to create certifiably robust physical objects.
arXiv Detail & Related papers (2023-05-23T16:07:58Z) - A Random-patch based Defense Strategy Against Physical Attacks for Face
Recognition Systems [3.6202815454709536]
We propose a random-patch based defense strategy to robustly detect physical attacks for Face Recognition System (FRS)
Our method can be easily applied to the real world face recognition system and extended to other defense methods to boost the detection performance.
arXiv Detail & Related papers (2023-04-16T16:11:56Z) - Increasing Confidence in Adversarial Robustness Evaluations [53.2174171468716]
We propose a test to identify weak attacks and thus weak defense evaluations.
Our test slightly modifies a neural network to guarantee the existence of an adversarial example for every sample.
For eleven out of thirteen previously-published defenses, the original evaluation of the defense fails our test, while stronger attacks that break these defenses pass it.
arXiv Detail & Related papers (2022-06-28T13:28:13Z) - Defending Against Person Hiding Adversarial Patch Attack with a
Universal White Frame [28.128458352103543]
High-performance object detection networks are vulnerable to adversarial patch attacks.
Person-hiding attacks are emerging as a serious problem in many safety-critical applications.
We propose a novel defense strategy that mitigates a person-hiding attack by optimizing defense patterns.
arXiv Detail & Related papers (2022-04-27T15:18:08Z) - Segment and Complete: Defending Object Detectors against Adversarial
Patch Attacks with Robust Patch Detection [142.24869736769432]
Adversarial patch attacks pose a serious threat to state-of-the-art object detectors.
We propose Segment and Complete defense (SAC), a framework for defending object detectors against patch attacks.
We show SAC can significantly reduce the targeted attack success rate of physical patch attacks.
arXiv Detail & Related papers (2021-12-08T19:18:48Z) - Robustness Out of the Box: Compositional Representations Naturally
Defend Against Black-Box Patch Attacks [11.429509031463892]
Patch-based adversarial attacks introduce a perceptible but localized change to the input that induces misclassification.
In this work, we study two different approaches for defending against black-box patch attacks.
We find that adversarial training has limited effectiveness against state-of-the-art location-optimized patch attacks.
arXiv Detail & Related papers (2020-12-01T15:04:23Z) - On Certifying Robustness against Backdoor Attacks via Randomized
Smoothing [74.79764677396773]
We study the feasibility and effectiveness of certifying robustness against backdoor attacks using a recent technique called randomized smoothing.
Our results show the theoretical feasibility of using randomized smoothing to certify robustness against backdoor attacks.
Existing randomized smoothing methods have limited effectiveness at defending against backdoor attacks.
arXiv Detail & Related papers (2020-02-26T19:15:46Z) - (De)Randomized Smoothing for Certifiable Defense against Patch Attacks [136.79415677706612]
We introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size.
Our method is related to the broad class of randomized smoothing robustness schemes.
Our results effectively establish a new state-of-the-art of certifiable defense against patch attacks on CIFAR-10 and ImageNet.
arXiv Detail & Related papers (2020-02-25T08:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.