Latent Embedding Feedback and Discriminative Features for Zero-Shot
Classification
- URL: http://arxiv.org/abs/2003.07833v2
- Date: Sat, 18 Jul 2020 12:27:38 GMT
- Title: Latent Embedding Feedback and Discriminative Features for Zero-Shot
Classification
- Authors: Sanath Narayan, Akshita Gupta, Fahad Shahbaz Khan, Cees G. M. Snoek,
Ling Shao
- Abstract summary: zero-shot learning aims to classify unseen categories for which no data is available during training.
Generative Adrial Networks synthesize unseen class features by leveraging class-specific semantic embeddings.
We propose to enforce semantic consistency at all stages of zero-shot learning: training, feature synthesis and classification.
- Score: 139.44681304276
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Zero-shot learning strives to classify unseen categories for which no data is
available during training. In the generalized variant, the test samples can
further belong to seen or unseen categories. The state-of-the-art relies on
Generative Adversarial Networks that synthesize unseen class features by
leveraging class-specific semantic embeddings. During training, they generate
semantically consistent features, but discard this constraint during feature
synthesis and classification. We propose to enforce semantic consistency at all
stages of (generalized) zero-shot learning: training, feature synthesis and
classification. We first introduce a feedback loop, from a semantic embedding
decoder, that iteratively refines the generated features during both the
training and feature synthesis stages. The synthesized features together with
their corresponding latent embeddings from the decoder are then transformed
into discriminative features and utilized during classification to reduce
ambiguities among categories. Experiments on (generalized) zero-shot object and
action classification reveal the benefit of semantic consistency and iterative
feedback, outperforming existing methods on six zero-shot learning benchmarks.
Source code at https://github.com/akshitac8/tfvaegan.
Related papers
- SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized
Zero-Shot Learning [0.7420433640907689]
Generalized Zero-Shot Learning (GZSL) recognizes unseen classes by transferring knowledge from the seen classes.
This paper introduces a dual strategy to address the generalization gap.
arXiv Detail & Related papers (2023-12-20T15:18:51Z) - Exploiting Semantic Attributes for Transductive Zero-Shot Learning [97.61371730534258]
Zero-shot learning aims to recognize unseen classes by generalizing the relation between visual features and semantic attributes learned from the seen classes.
We present a novel transductive ZSL method that produces semantic attributes of the unseen data and imposes them on the generative process.
Experiments on five standard benchmarks show that our method yields state-of-the-art results for zero-shot learning.
arXiv Detail & Related papers (2023-03-17T09:09:48Z) - Exploring Category-correlated Feature for Few-shot Image Classification [27.13708881431794]
We present a simple yet effective feature rectification method by exploring the category correlation between novel and base classes as the prior knowledge.
The proposed approach consistently obtains considerable performance gains on three widely used benchmarks.
arXiv Detail & Related papers (2021-12-14T08:25:24Z) - Make an Omelette with Breaking Eggs: Zero-Shot Learning for Novel
Attribute Synthesis [65.74825840440504]
We propose Zero Shot Learning for Attributes (ZSLA), which is the first of its kind to the best of our knowledge.
Our proposed method is able to synthesize the detectors of novel attributes in a zero-shot learning manner.
With using only 32 seen attributes on the Caltech-UCSD Birds-200-2011 dataset, our proposed method is able to synthesize other 207 novel attributes.
arXiv Detail & Related papers (2021-11-28T15:45:54Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - GAN for Vision, KG for Relation: a Two-stage Deep Network for Zero-shot
Action Recognition [33.23662792742078]
We propose a two-stage deep neural network for zero-shot action recognition.
In the sampling stage, we utilize a generative adversarial networks (GAN) trained by action features and word vectors of seen classes.
In the classification stage, we construct a knowledge graph based on the relationship between word vectors of action classes and related objects.
arXiv Detail & Related papers (2021-05-25T09:34:42Z) - Generative Multi-Label Zero-Shot Learning [136.17594611722285]
Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training.
Our work is the first to tackle the problem of multi-label feature in the (generalized) zero-shot setting.
Our cross-level fusion-based generative approach outperforms the state-of-the-art on all three datasets.
arXiv Detail & Related papers (2021-01-27T18:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.