The State of Lifelong Learning in Service Robots: Current Bottlenecks in
Object Perception and Manipulation
- URL: http://arxiv.org/abs/2003.08151v3
- Date: Thu, 6 May 2021 18:58:38 GMT
- Title: The State of Lifelong Learning in Service Robots: Current Bottlenecks in
Object Perception and Manipulation
- Authors: S. Hamidreza Kasaei, Jorik Melsen, Floris van Beers, Christiaan
Steenkist, and Klemen Voncina
- Abstract summary: State-of-the-art continues to improve to make a proper coupling between object perception and manipulation.
In most of the cases, robots are able to recognize various objects, and quickly plan a collision-free trajectory to grasp a target object.
In such environments, no matter how extensive the training data used for batch learning, a robot will always face new objects.
apart from robot self-learning, non-expert users could interactively guide the process of experience acquisition.
- Score: 3.7858180627124463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Service robots are appearing more and more in our daily life. The development
of service robots combines multiple fields of research, from object perception
to object manipulation. The state-of-the-art continues to improve to make a
proper coupling between object perception and manipulation. This coupling is
necessary for service robots not only to perform various tasks in a reasonable
amount of time but also to continually adapt to new environments and safely
interact with non-expert human users. Nowadays, robots are able to recognize
various objects, and quickly plan a collision-free trajectory to grasp a target
object in predefined settings. Besides, in most of the cases, there is a
reliance on large amounts of training data. Therefore, the knowledge of such
robots is fixed after the training phase, and any changes in the environment
require complicated, time-consuming, and expensive robot re-programming by
human experts. Therefore, these approaches are still too rigid for real-life
applications in unstructured environments, where a significant portion of the
environment is unknown and cannot be directly sensed or controlled. In such
environments, no matter how extensive the training data used for batch
learning, a robot will always face new objects. Therefore, apart from batch
learning, the robot should be able to continually learn about new object
categories and grasp affordances from very few training examples on-site.
Moreover, apart from robot self-learning, non-expert users could interactively
guide the process of experience acquisition by teaching new concepts, or by
correcting insufficient or erroneous concepts. In this way, the robot will
constantly learn how to help humans in everyday tasks by gaining more and more
experiences without the need for re-programming.
Related papers
- Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Interactive Continual Learning Architecture for Long-Term
Personalization of Home Service Robots [11.648129262452116]
We develop a novel interactive continual learning architecture for continual learning of semantic knowledge in a home environment through human-robot interaction.
The architecture builds on core cognitive principles of learning and memory for efficient and real-time learning of new knowledge from humans.
arXiv Detail & Related papers (2024-03-06T04:55:39Z) - How Do Human Users Teach a Continual Learning Robot in Repeated
Interactions? [7.193217430660011]
We take a human-centered approach to continual learning, to understand how humans teach continual learning robots over the long term.
We conducted an in-person study with 40 participants that interacted with a continual learning robot in 200 sessions.
An extensive qualitative and quantitative analysis of the data collected in the study shows that there is significant variation among the teaching styles of individual users.
arXiv Detail & Related papers (2023-06-30T20:29:48Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
We propose dual-arm settings as platforms for robot learning.
We will discuss the potential benefits of this setup as well as the challenges and research directions that can be pursued.
arXiv Detail & Related papers (2021-10-15T12:51:57Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Continual Learning of Visual Concepts for Robots through Limited
Supervision [9.89901717499058]
My research focuses on developing robots that continually learn in dynamic unseen environments/scenarios.
I develop machine learning models that produce State-of-the-results on benchmark datasets.
arXiv Detail & Related papers (2021-01-26T01:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.