Malicious Experts versus the multiplicative weights algorithm in online
prediction
- URL: http://arxiv.org/abs/2003.08457v1
- Date: Wed, 18 Mar 2020 20:12:08 GMT
- Title: Malicious Experts versus the multiplicative weights algorithm in online
prediction
- Authors: Erhan Bayraktar, H. Vincent Poor, Xin Zhang
- Abstract summary: We consider a prediction problem with two experts and a forecaster.
We assume that one of the experts is honest and makes correct prediction with probability $mu$ at each round.
The other one is malicious, who knows true outcomes at each round and makes predictions in order to maximize the loss of the forecaster.
- Score: 85.62472761361107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a prediction problem with two experts and a forecaster. We assume
that one of the experts is honest and makes correct prediction with probability
$\mu$ at each round. The other one is malicious, who knows true outcomes at
each round and makes predictions in order to maximize the loss of the
forecaster. Assuming the forecaster adopts the classical multiplicative weights
algorithm, we find upper and lower bounds for the value function of the
malicious expert. Our results imply that the multiplicative weights algorithm
cannot resist the corruption of malicious experts. We also show that an
adaptive multiplicative weights algorithm is asymptotically optimal for the
forecaster, and hence more resistant to the corruption of malicious experts.
Related papers
- Fair Secretaries with Unfair Predictions [12.756552522270198]
We show that an algorithm can have zero probability of accepting the best candidate, which we deem unfair, despite promising to accept a candidate whose expected value is at least $maxOmega (1), 1 - O(epsilon)$ times the optimal value, where $epsilon$ is the prediction error.
Our algorithm and analysis are based on a new "pegging" idea that diverges from existing works and simplifies/unifies some of their results.
arXiv Detail & Related papers (2024-11-15T00:23:59Z) - Towards Human-AI Complementarity with Prediction Sets [14.071862670474832]
Decision support systems based on prediction sets have proven to be effective at helping human experts solve classification tasks.
We show that the prediction sets constructed using conformal prediction are, in general, suboptimal in terms of average accuracy.
We introduce a greedy algorithm that, for a large class of expert models and non-optimal scores, is guaranteed to find prediction sets that provably offer equal or greater performance.
arXiv Detail & Related papers (2024-05-27T18:00:00Z) - Sorting and Hypergraph Orientation under Uncertainty with Predictions [0.45880283710344055]
We study learning-augmented algorithms for sorting and hypergraph orientation under uncertainty.
Our algorithms provide improved performance guarantees for accurate predictions while maintaining worst-case guarantees that are best possible without predictions.
arXiv Detail & Related papers (2023-05-16T07:52:08Z) - Mixing predictions for online metric algorithms [34.849039387367455]
We design algorithms that combine predictions and are competitive against such dynamic combinations.
Our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time.
An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the $k$-server problem.
arXiv Detail & Related papers (2023-04-04T13:18:00Z) - Streaming Algorithms for Learning with Experts: Deterministic Versus
Robust [62.98860182111096]
In the online learning with experts problem, an algorithm must make a prediction about an outcome on each of $T$ days (or times)
The goal is to make a prediction with the minimum cost, specifically compared to the best expert in the set.
We show a space lower bound of $widetildeOmegaleft(fracnMRTright)$ for any deterministic algorithm that achieves regret $R$ when the best expert makes $M$ mistakes.
arXiv Detail & Related papers (2023-03-03T04:39:53Z) - Memory Bounds for the Experts Problem [53.67419690563877]
Online learning with expert advice is a fundamental problem of sequential prediction.
The goal is to process predictions, and make a prediction with the minimum cost.
An algorithm is judged by how well it does compared to the best expert in the set.
arXiv Detail & Related papers (2022-04-21T01:22:18Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
We study a learning-augmented variant of the classical, notoriously hard online graph exploration problem.
We propose an algorithm that naturally integrates predictions into the well-known Nearest Neighbor (NN) algorithm.
arXiv Detail & Related papers (2021-12-10T10:02:31Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
We study the fundamental online $k$-server problem in a learning-augmented setting.
We show that our algorithm achieves for any k an almost optimal consistency-robustness tradeoff.
arXiv Detail & Related papers (2021-03-02T11:04:33Z) - Toward Optimal Adversarial Policies in the Multiplicative Learning
System with a Malicious Expert [87.12201611818698]
We consider a learning system that combines experts' advice to predict a sequence of true outcomes.
It is assumed that one of the experts is malicious and aims to impose the maximum loss on the system.
We show that a simple greedy policy of always reporting false prediction is optimal with an approximation ratio of $1+O(sqrtfracln NN)$.
For the online setting where the malicious expert can adaptively make its decisions, we show that the optimal online policy can be efficiently computed by solving a dynamic program in $O(N3)$.
arXiv Detail & Related papers (2020-01-02T18:04:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.