Unsupervised Domain Adaptation via Structurally Regularized Deep
Clustering
- URL: http://arxiv.org/abs/2003.08607v1
- Date: Thu, 19 Mar 2020 07:26:41 GMT
- Title: Unsupervised Domain Adaptation via Structurally Regularized Deep
Clustering
- Authors: Hui Tang, Ke Chen, and Kui Jia
- Abstract summary: Unsupervised domain adaptation (UDA) is to make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution shifts from the target one.
We propose to directly uncover the intrinsic target discrimination via discriminative clustering of target data.
We term our proposed method as Structurally Regularized Deep Clustering (SRDC), where we also enhance target discrimination with clustering of intermediate network features.
- Score: 35.008158504090176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) is to make predictions for unlabeled
data on a target domain, given labeled data on a source domain whose
distribution shifts from the target one. Mainstream UDA methods learn aligned
features between the two domains, such that a classifier trained on the source
features can be readily applied to the target ones. However, such a
transferring strategy has a potential risk of damaging the intrinsic
discrimination of target data. To alleviate this risk, we are motivated by the
assumption of structural domain similarity, and propose to directly uncover the
intrinsic target discrimination via discriminative clustering of target data.
We constrain the clustering solutions using structural source regularization
that hinges on our assumed structural domain similarity. Technically, we use a
flexible framework of deep network based discriminative clustering that
minimizes the KL divergence between predictive label distribution of the
network and an introduced auxiliary one; replacing the auxiliary distribution
with that formed by ground-truth labels of source data implements the
structural source regularization via a simple strategy of joint network
training. We term our proposed method as Structurally Regularized Deep
Clustering (SRDC), where we also enhance target discrimination with clustering
of intermediate network features, and enhance structural regularization with
soft selection of less divergent source examples. Careful ablation studies show
the efficacy of our proposed SRDC. Notably, with no explicit domain alignment,
SRDC outperforms all existing methods on three UDA benchmarks.
Related papers
- Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - Unsupervised Domain Adaptation via Distilled Discriminative Clustering [45.39542287480395]
We re-cast the domain adaptation problem as discriminative clustering of target data.
We propose to jointly train the network using parallel, supervised learning objectives over labeled source data.
We conduct careful ablation studies and extensive experiments on five popular benchmark datasets.
arXiv Detail & Related papers (2023-02-23T13:03:48Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Polycentric Clustering and Structural Regularization for Source-free
Unsupervised Domain Adaptation [20.952542421577487]
Source-Free Domain Adaptation (SFDA) aims to solve the domain adaptation problem by transferring the knowledge learned from a pre-trained source model to an unseen target domain.
Most existing methods assign pseudo-labels to the target data by generating feature prototypes.
In this paper, a novel framework named PCSR is proposed to tackle SFDA via a novel intra-class Polycentric Clustering and Structural Regularization strategy.
arXiv Detail & Related papers (2022-10-14T02:20:48Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
We propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.
We regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching.
An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee.
arXiv Detail & Related papers (2020-03-20T16:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.