PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree
Conditions
- URL: http://arxiv.org/abs/2003.08624v2
- Date: Thu, 16 Jul 2020 01:28:18 GMT
- Title: PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree
Conditions
- Authors: Kaichun Mo, He Wang, Xinchen Yan, Leonidas J. Guibas
- Abstract summary: This paper investigates the novel problem of generating 3D shape point cloud geometry from a symbolic part tree representation.
We propose a conditional GAN "part tree"-to-"point cloud" model (PT2PC) that disentangles the structural and geometric factors.
- Score: 66.87405921626004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D generative shape modeling is a fundamental research area in computer
vision and interactive computer graphics, with many real-world applications.
This paper investigates the novel problem of generating 3D shape point cloud
geometry from a symbolic part tree representation. In order to learn such a
conditional shape generation procedure in an end-to-end fashion, we propose a
conditional GAN "part tree"-to-"point cloud" model (PT2PC) that disentangles
the structural and geometric factors. The proposed model incorporates the part
tree condition into the architecture design by passing messages top-down and
bottom-up along the part tree hierarchy. Experimental results and user study
demonstrate the strengths of our method in generating perceptually plausible
and diverse 3D point clouds, given the part tree condition. We also propose a
novel structural measure for evaluating if the generated shape point clouds
satisfy the part tree conditions.
Related papers
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - RISA-Net: Rotation-Invariant Structure-Aware Network for Fine-Grained 3D
Shape Retrieval [46.02391761751015]
Fine-grained 3D shape retrieval aims to retrieve 3D shapes similar to a query shape in a repository with models belonging to the same class.
We introduce a novel deep architecture, RISA-Net, which learns rotation invariant 3D shape descriptors.
Our method is able to learn the importance of geometric and structural information of all the parts when generating the final compact latent feature of a 3D shape.
arXiv Detail & Related papers (2020-10-02T13:06:12Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
We introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes.
This supports a range of novel shape generation applications with disentangled control, such as of structure (geometry) while keeping geometry (structure) unchanged.
Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2020-08-12T17:06:51Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
Point cloud is a principal data structure adopted for 3D geometric information encoding.
Shape-oriented message passing scheme dubbed ShapeConv is proposed to focus on the representation learning of the underlying shape formed by each local neighboring point.
arXiv Detail & Related papers (2020-04-20T16:11:51Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z) - STD-Net: Structure-preserving and Topology-adaptive Deformation Network
for 3D Reconstruction from a Single Image [27.885717341244014]
3D reconstruction from a single view image is a long-standing prob-lem in computer vision.
In this paper, we propose a novel methodcalled STD-Net to reconstruct the 3D models utilizing the mesh representation.
Experimental results on the images from ShapeNet show that ourproposed STD-Net has better performance than other state-of-the-art methods onreconstructing 3D objects.
arXiv Detail & Related papers (2020-03-07T11:02:47Z) - Unsupervised Learning of Intrinsic Structural Representation Points [50.92621061405056]
Learning structures of 3D shapes is a fundamental problem in the field of computer graphics and geometry processing.
We present a simple yet interpretable unsupervised method for learning a new structural representation in the form of 3D structure points.
arXiv Detail & Related papers (2020-03-03T17:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.