Temporal Extension Module for Skeleton-Based Action Recognition
- URL: http://arxiv.org/abs/2003.08951v2
- Date: Mon, 19 Oct 2020 02:39:04 GMT
- Title: Temporal Extension Module for Skeleton-Based Action Recognition
- Authors: Yuya Obinata and Takuma Yamamoto
- Abstract summary: We present a module that extends the temporal graph of a graph convolutional network (GCN) for action recognition with a sequence of skeletons.
Our module is a simple yet effective method to extract correlated features of multiple joints in human movement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a module that extends the temporal graph of a graph convolutional
network (GCN) for action recognition with a sequence of skeletons. Existing
methods attempt to represent a more appropriate spatial graph on an
intra-frame, but disregard optimization of the temporal graph on the
interframe. Concretely, these methods connect between vertices corresponding
only to the same joint on the inter-frame. In this work, we focus on adding
connections to neighboring multiple vertices on the inter-frame and extracting
additional features based on the extended temporal graph. Our module is a
simple yet effective method to extract correlated features of multiple joints
in human movement. Moreover, our module aids in further performance
improvements, along with other GCN methods that optimize only the spatial
graph. We conduct extensive experiments on two large datasets, NTU RGB+D and
Kinetics-Skeleton, and demonstrate that our module is effective for several
existing models and our final model achieves state-of-the-art performance.
Related papers
- Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN.
We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node.
arXiv Detail & Related papers (2024-04-03T10:25:45Z) - Multi-Scale Spatial Temporal Graph Convolutional Network for
Skeleton-Based Action Recognition [13.15374205970988]
We present a multi-scale spatial graph convolution (MS-GC) module and a multi-scale temporal graph convolution (MT-GC) module.
The MS-GC and MT-GC modules decompose the corresponding local graph convolution into a set of sub-graph convolutions, forming a hierarchical residual architecture.
We propose a multi-scale spatial temporal graph convolutional network (MST-GCN), which stacks multiple blocks to learn effective motion representations for action recognition.
arXiv Detail & Related papers (2022-06-27T03:17:33Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - Temporal Graph Modeling for Skeleton-based Action Recognition [25.788239844759246]
We propose a Temporal Enhanced Graph Convolutional Network (TE-GCN) to capture complex temporal dynamic.
The constructed temporal relation graph explicitly builds connections between semantically related temporal features.
Experiments are performed on two widely used large-scale datasets.
arXiv Detail & Related papers (2020-12-16T09:02:47Z) - Multi Scale Temporal Graph Networks For Skeleton-based Action
Recognition [5.970574258839858]
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model.
Existing methods based on GCNs have two problems. First, the consistency of temporal and spatial features is ignored for extracting features node by node and frame by frame.
We propose a novel model called Temporal Graph Networks (TGN) for action recognition.
arXiv Detail & Related papers (2020-12-05T08:08:25Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.