Environment-assisted bosonic quantum communications
- URL: http://arxiv.org/abs/2003.09246v1
- Date: Fri, 20 Mar 2020 12:58:44 GMT
- Title: Environment-assisted bosonic quantum communications
- Authors: Stefano Pirandola, Carlo Ottaviani, Christian S. Jacobsen, Gaetana
Spedalieri, Samuel L. Braunstein, Tobias Gehring, and Ulrik L. Andersen
- Abstract summary: We consider a quantum relay which is used by two parties to perform several continuous-variable protocols of quantum communication.
In the worst case scenario where bipartite entanglement is completely lost at the relay, we show that the various protocols can be reactivated by the assistance of classical (separable) correlations in the environment.
Our findings are confirmed by a proof-of-principle experiment where we show, for the first time, that memory effects in the environment can drastically enhance the performance of a quantum relay.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a quantum relay which is used by two parties to perform several
continuous-variable protocols of quantum communication, from entanglement
distribution (swapping and distillation), to quantum teleportation, and quantum
key distribution. The theory of these protocols is suitably extended to a
non-Markovian model of decoherence characterized by correlated Gaussian noise
in the bosonic environment. In the worst case scenario where bipartite
entanglement is completely lost at the relay, we show that the various
protocols can be reactivated by the assistance of classical (separable)
correlations in the environment. In fact, above a critical amount, these
correlations are able to guarantee the distribution of a weaker form of
entanglement (quadripartite), which can be localized by the relay into a
stronger form (bipartite) that is exploitable by the parties. Our findings are
confirmed by a proof-of-principle experiment where we show, for the first time,
that memory effects in the environment can drastically enhance the performance
of a quantum relay, well beyond the single-repeater bound for quantum and
private communications.
Related papers
- Bidirectional classical communication cost of a bipartite quantum channel assisted by non-signalling correlations [6.1108095842541]
This paper investigates the bidirectional classical communication cost of simulating a bipartite quantum channel assisted by non-signalling correlations.
We derive semidefinite programming (SDP) formulations for the one-shot exact bidirectional classical communication cost via non-signalling bipartite superchannels.
Our results elucidate the role of non-locality in quantum communication and pave the way for exploring quantum reverse Shannon theory in bipartite scenarios.
arXiv Detail & Related papers (2024-08-05T14:30:50Z) - Geometry of sequential quantum correlations and robust randomness
certification [0.0]
We study the geometry of quantum correlations and their implications for robust device-independent randomness generation.
We identify a boundary for the set of these correlations expressed as a trade-off between the amount of nonlocality between different observers.
We propose a practical protocol based on non-projective measurements that can produce the boundary correlations under ideal conditions.
arXiv Detail & Related papers (2023-09-21T17:50:29Z) - Correlated noise enhances coherence and fidelity in coupled qubits [5.787049285733455]
Noise correlation can enhance the fidelity and purity of a maximally entangled (Bell) state.
These observations may be useful in the design of high-fidelity quantum gates and communication protocols.
arXiv Detail & Related papers (2023-08-01T21:13:35Z) - Multipartite entanglement theory with entanglement-nonincreasing
operations [91.3755431537592]
We extend the resource theory of entanglement for multipartite systems beyond the standard framework of local operations and classical communication.
We demonstrate that in this adjusted framework, the transformation rates between multipartite states are fundamentally dictated by the bipartite entanglement entropies of the respective quantum states.
arXiv Detail & Related papers (2023-05-30T12:53:56Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Exact rate analysis for quantum repeaters with imperfect memories and
entanglement swapping as soon as possible [0.0]
We present an exact rate analysis for a secret key that can be shared among two parties employing a linear quantum repeater chain.
We consider additional tools and parameters such as memory cut-offs, multiplexing, initial state and swapping gate fidelities.
arXiv Detail & Related papers (2022-03-19T12:55:56Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Quantum Advantage for Shared Randomness Generation [0.0]
We show that quantum systems provide an advantage over their classical counterpart.
In a resource theoretic set-up, this feature of quantum systems can be interpreted as an advantage in winning a two players co-operative game.
Protocols presented here are noise-robust and hence should be realizable with state-of-the-art quantum devices.
arXiv Detail & Related papers (2020-01-07T05:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.