Towards Time-Aware Context-Aware Deep Trust Prediction in Online Social
Networks
- URL: http://arxiv.org/abs/2003.09543v1
- Date: Sat, 21 Mar 2020 01:00:02 GMT
- Title: Towards Time-Aware Context-Aware Deep Trust Prediction in Online Social
Networks
- Authors: Seyed Mohssen Ghafari
- Abstract summary: Trust can be defined as a measure to determine which source of information is reliable and with whom we should share or from whom we should accept information.
There are several applications for trust in Online Social Networks (OSNs), including social spammer detection, fake news detection, retweet behaviour detection and recommender systems.
Trust prediction is the process of predicting a new trust relation between two users who are not currently connected.
- Score: 0.4061135251278187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trust can be defined as a measure to determine which source of information is
reliable and with whom we should share or from whom we should accept
information. There are several applications for trust in Online Social Networks
(OSNs), including social spammer detection, fake news detection, retweet
behaviour detection and recommender systems. Trust prediction is the process of
predicting a new trust relation between two users who are not currently
connected. In applications of trust, trust relations among users need to be
predicted. This process faces many challenges, such as the sparsity of
user-specified trust relations, the context-awareness of trust and changes in
trust values over time. In this dissertation, we analyse the state-of-the-art
in pair-wise trust prediction models in OSNs. We discuss three main challenges
in this domain and present novel trust prediction approaches to address them.
We first focus on proposing a low-rank representation of users that
incorporates users' personality traits as additional information. Then, we
propose a set of context-aware trust prediction models. Finally, by considering
the time-dependency of trust relations, we propose a dynamic deep trust
prediction approach. We design and implement five pair-wise trust prediction
approaches and evaluate them with real-world datasets collected from OSNs. The
experimental results demonstrate the effectiveness of our approaches compared
to other state-of-the-art pair-wise trust prediction models.
Related papers
- A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
Modern NLP systems are often uncalibrated, resulting in confidently incorrect predictions that undermine user trust.
We study the evolution of user trust in response to trust-eroding events using a betting game.
arXiv Detail & Related papers (2023-10-20T14:41:46Z) - TrustGuard: GNN-based Robust and Explainable Trust Evaluation with
Dynamicity Support [59.41529066449414]
We propose TrustGuard, a GNN-based accurate trust evaluation model that supports trust dynamicity.
TrustGuard is designed with a layered architecture that contains a snapshot input layer, a spatial aggregation layer, a temporal aggregation layer, and a prediction layer.
Experiments show that TrustGuard outperforms state-of-the-art GNN-based trust evaluation models with respect to trust prediction across single-timeslot and multi-timeslot.
arXiv Detail & Related papers (2023-06-23T07:39:12Z) - KGTrust: Evaluating Trustworthiness of SIoT via Knowledge Enhanced Graph
Neural Networks [63.531790269009704]
Social Internet of Things (SIoT) is a promising and emerging paradigm that injects the notion of social networking into smart objects (i.e., things)
Due to the risks and uncertainty, a crucial and urgent problem to be settled is establishing reliable relationships within SIoT, that is, trust evaluation.
We propose a novel knowledge-enhanced graph neural network (KGTrust) for better trust evaluation in SIoT.
arXiv Detail & Related papers (2023-02-22T14:24:45Z) - A Trustworthiness Score to Evaluate DNN Predictions [1.5484595752241122]
It is critical for safety during operation to know when deep neural networks' predictions are trustworthy or suspicious.
We introduce the trustworthiness score (TS), a metric that provides a more transparent and effective way of providing confidence in predictions.
We conduct a case study using YOLOv5 on persons detection to demonstrate our method and usage of TS and SS.
arXiv Detail & Related papers (2023-01-21T00:48:18Z) - TrustGNN: Graph Neural Network based Trust Evaluation via Learnable
Propagative and Composable Nature [63.78619502896071]
Trust evaluation is critical for many applications such as cyber security, social communication and recommender systems.
We propose a new GNN based trust evaluation method named TrustGNN, which integrates smartly the propagative and composable nature of trust graphs.
Specifically, TrustGNN designs specific propagative patterns for different propagative processes of trust, and distinguishes the contribution of different propagative processes to create new trust.
arXiv Detail & Related papers (2022-05-25T13:57:03Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
We present an approach for predicting trust links between peers in social media.
We propose a data-driven multi-faceted trust modeling which incorporates many distinct features for a comprehensive analysis.
Illustrated in a trust-aware item recommendation task, we evaluate the proposed framework in the context of a large Yelp dataset.
arXiv Detail & Related papers (2021-11-11T19:40:51Z) - Where Does Trust Break Down? A Quantitative Trust Analysis of Deep
Neural Networks via Trust Matrix and Conditional Trust Densities [94.65749466106664]
We introduce the concept of trust matrix, a novel trust quantification strategy.
A trust matrix defines the expected question-answer trust for a given actor-oracle answer scenario.
We further extend the concept of trust densities with the notion of conditional trust densities.
arXiv Detail & Related papers (2020-09-30T14:33:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.