Peeking into occluded joints: A novel framework for crowd pose
estimation
- URL: http://arxiv.org/abs/2003.10506v3
- Date: Tue, 31 Mar 2020 02:01:35 GMT
- Title: Peeking into occluded joints: A novel framework for crowd pose
estimation
- Authors: Lingteng Qiu, Xuanye Zhang, Yanran Li, Guanbin Li, Xiaojun Wu, Zixiang
Xiong, Xiaoguang Han and Shuguang Cui
- Abstract summary: OPEC-Net is an Image-Guided Progressive GCN module that estimates invisible joints from an inference perspective.
OCPose is the most complex Occluded Pose dataset with respect to average IoU between adjacent instances.
- Score: 88.56203133287865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although occlusion widely exists in nature and remains a fundamental
challenge for pose estimation, existing heatmap-based approaches suffer serious
degradation on occlusions. Their intrinsic problem is that they directly
localize the joints based on visual information; however, the invisible joints
are lack of that. In contrast to localization, our framework estimates the
invisible joints from an inference perspective by proposing an Image-Guided
Progressive GCN module which provides a comprehensive understanding of both
image context and pose structure. Moreover, existing benchmarks contain limited
occlusions for evaluation. Therefore, we thoroughly pursue this problem and
propose a novel OPEC-Net framework together with a new Occluded Pose (OCPose)
dataset with 9k annotated images. Extensive quantitative and qualitative
evaluations on benchmarks demonstrate that OPEC-Net achieves significant
improvements over recent leading works. Notably, our OCPose is the most complex
occlusion dataset with respect to average IoU between adjacent instances.
Source code and OCPose will be publicly available.
Related papers
- UNOPose: Unseen Object Pose Estimation with an Unposed RGB-D Reference Image [86.7128543480229]
We present a novel approach and benchmark, termed UNOPose, for unseen one-reference-based object pose estimation.
Building upon a coarse-to-fine paradigm, UNOPose constructs an SE(3)-invariant reference frame to standardize object representation.
We recalibrate the weight of each correspondence based on its predicted likelihood of being within the overlapping region.
arXiv Detail & Related papers (2024-11-25T05:36:00Z) - Dynamic Feature Pruning and Consolidation for Occluded Person
Re-Identification [21.006680330530852]
We propose a feature pruning and consolidation (FPC) framework to circumvent explicit human structure parsing.
The framework mainly consists of a sparse encoder, a multi-view feature mathcing module, and a feature consolidation decoder.
Our method outperforms state-of-the-art results by at least 8.6% mAP and 6.0% Rank-1 accuracy on the challenging Occluded-Duke dataset.
arXiv Detail & Related papers (2022-11-27T06:18:40Z) - Generalised Co-Salient Object Detection [50.876864826216924]
We propose a new setting that relaxes an assumption in the conventional Co-Salient Object Detection (CoSOD) setting.
We call this new setting Generalised Co-Salient Object Detection (GCoSOD)
We propose a novel random sampling based Generalised CoSOD Training (GCT) strategy to distill the awareness of inter-image absence of co-salient objects into CoSOD models.
arXiv Detail & Related papers (2022-08-20T12:23:32Z) - Temporal Feature Alignment and Mutual Information Maximization for
Video-Based Human Pose Estimation [38.571715193347366]
We present a novel hierarchical alignment framework for multi-frame human pose estimation.
We rank No.1 in the Multi-frame Person Pose Estimation Challenge on benchmark dataset PoseTrack 2017, and obtain state-of-the-art performance on benchmarks Sub-JHMDB and Pose-Track 2018.
arXiv Detail & Related papers (2022-03-29T04:29:16Z) - Railroad is not a Train: Saliency as Pseudo-pixel Supervision for Weakly
Supervised Semantic Segmentation [16.560870740946275]
Explicit Pseudo-pixel Supervision (EPS) learns from pixel-level feedback by combining two weak supervisions.
We devise a joint training strategy to fully utilize the complementary relationship between both information.
Our method can obtain accurate object boundaries and discard co-occurring pixels, thereby significantly improving the quality of pseudo-masks.
arXiv Detail & Related papers (2021-05-19T07:31:11Z) - Learning to Estimate Hidden Motions with Global Motion Aggregation [71.12650817490318]
Occlusions pose a significant challenge to optical flow algorithms that rely on local evidences.
We introduce a global motion aggregation module to find long-range dependencies between pixels in the first image.
We demonstrate that the optical flow estimates in the occluded regions can be significantly improved without damaging the performance in non-occluded regions.
arXiv Detail & Related papers (2021-04-06T10:32:03Z) - AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in
the Wild [77.43884383743872]
We present AdaFuse, an adaptive multiview fusion method to enhance the features in occluded views.
We extensively evaluate the approach on three public datasets including Human3.6M, Total Capture and CMU Panoptic.
We also create a large scale synthetic dataset Occlusion-Person, which allows us to perform numerical evaluation on the occluded joints.
arXiv Detail & Related papers (2020-10-26T03:19:46Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.