TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks
- URL: http://arxiv.org/abs/2003.10751v1
- Date: Tue, 24 Mar 2020 10:12:30 GMT
- Title: TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks
- Authors: Tobias Czempiel, Magdalini Paschali, Matthias Keicher, Walter Simson,
Hubertus Feussner, Seong Tae Kim, Nassir Navab
- Abstract summary: We propose a Multi-Stage Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement for surgical phase recognition.
Our method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and without the use of additional surgical tool information.
- Score: 43.95869213955351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic surgical phase recognition is a challenging and crucial task with
the potential to improve patient safety and become an integral part of
intra-operative decision-support systems. In this paper, we propose, for the
first time in workflow analysis, a Multi-Stage Temporal Convolutional Network
(MS-TCN) that performs hierarchical prediction refinement for surgical phase
recognition. Causal, dilated convolutions allow for a large receptive field and
online inference with smooth predictions even during ambiguous transitions. Our
method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy
videos with and without the use of additional surgical tool information.
Outperforming various state-of-the-art LSTM approaches, we verify the
suitability of the proposed causal MS-TCN for surgical phase recognition.
Related papers
- SPRMamba: Surgical Phase Recognition for Endoscopic Submucosal Dissection with Mamba [4.37495931705689]
We propose SPRMamba, a novel Mamba-based framework for ESD surgical phase recognition.
We show that SPRMamba surpasses existing state-of-the-art methods and exhibits greater robustness across various surgical phase recognition tasks.
arXiv Detail & Related papers (2024-09-18T16:26:56Z) - SuPRA: Surgical Phase Recognition and Anticipation for Intra-Operative
Planning [46.57714869178571]
We propose a dual approach that simultaneously recognises the current surgical phase and predicts upcoming ones.
Our novel method, Surgical Phase Recognition and Anticipation (SuPRA), leverages past and current information for accurate intra-operative phase recognition.
arXiv Detail & Related papers (2024-03-10T12:46:33Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.
We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.
Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - Friends Across Time: Multi-Scale Action Segmentation Transformer for
Surgical Phase Recognition [2.10407185597278]
We propose the Multi-Scale Action Transformer (MS-AST) for offline surgical phase recognition and the Multi-Scale Action Causal Transformer (MS-ASCT) for online surgical phase recognition.
Our method can achieve 95.26% and 96.15% accuracy on the Cholec80 dataset for online and offline surgical phase recognition, respectively.
arXiv Detail & Related papers (2024-01-22T01:34:03Z) - Surgical Temporal Action-aware Network with Sequence Regularization for
Phase Recognition [28.52533700429284]
We propose a Surgical Temporal Action-aware Network with sequence Regularization, named STAR-Net, to recognize surgical phases more accurately from input videos.
MS-STA module integrates visual features with spatial and temporal knowledge of surgical actions at the cost of 2D networks.
Our STAR-Net with MS-STA and DSR can exploit visual features of surgical actions with effective regularization, thereby leading to the superior performance of surgical phase recognition.
arXiv Detail & Related papers (2023-11-21T13:43:16Z) - Phase-Specific Augmented Reality Guidance for Microscopic Cataract
Surgery Using Long-Short Spatiotemporal Aggregation Transformer [14.568834378003707]
Phaemulsification cataract surgery (PCS) is a routine procedure using a surgical microscope.
PCS guidance systems extract valuable information from surgical microscopic videos to enhance proficiency.
Existing PCS guidance systems suffer from non-phasespecific guidance, leading to redundant visual information.
We propose a novel phase-specific augmented reality (AR) guidance system, which offers tailored AR information corresponding to the recognized surgical phase.
arXiv Detail & Related papers (2023-09-11T02:56:56Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
We propose a vision transformer-based approach to learn temporal features directly from sequence-level patches.
We extensively evaluate our approach on two cataract surgery video datasets, Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods.
arXiv Detail & Related papers (2023-07-20T17:57:04Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
We propose an intraoperative planning approach for robotic spine surgery that leverages real-time observation for drill path planning based on Safe Deep Reinforcement Learning (DRL)
Our approach was capable of achieving 90% bone penetration with respect to the gold standard (GS) drill planning.
arXiv Detail & Related papers (2023-05-09T11:42:53Z) - Surgical Phase Recognition in Laparoscopic Cholecystectomy [57.929132269036245]
We propose a Transformer-based method that utilizes calibrated confidence scores for a 2-stage inference pipeline.
Our method outperforms the baseline model on the Cholec80 dataset, and can be applied to a variety of action segmentation methods.
arXiv Detail & Related papers (2022-06-14T22:55:31Z) - Aggregating Long-Term Context for Learning Laparoscopic and
Robot-Assisted Surgical Workflows [40.48632897750319]
We propose a new temporal network structure that leverages task-specific network representation to collect long-term sufficient statistics.
We demonstrate superior results over existing and novel state-of-the-art segmentation techniques on two laparoscopic cholecystectomy datasets.
arXiv Detail & Related papers (2020-09-01T20:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.