DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares
- URL: http://arxiv.org/abs/2003.10826v1
- Date: Mon, 23 Mar 2020 09:18:54 GMT
- Title: DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares
- Authors: Yizhak Ben-Shabat and Stephen Gould
- Abstract summary: We propose a surface fitting method for unstructured 3D point clouds.
This method, called DeepFit, incorporates a neural network to learn point-wise weights for weighted least squares surface fitting.
- Score: 43.24287146191367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a surface fitting method for unstructured 3D point clouds. This
method, called DeepFit, incorporates a neural network to learn point-wise
weights for weighted least squares polynomial surface fitting. The learned
weights act as a soft selection for the neighborhood of surface points thus
avoiding the scale selection required of previous methods. To train the network
we propose a novel surface consistency loss that improves point weight
estimation. The method enables extracting normal vectors and other geometrical
properties, such as principal curvatures, the latter were not presented as
ground truth during training. We achieve state-of-the-art results on a
benchmark normal and curvature estimation dataset, demonstrate robustness to
noise, outliers and density variations, and show its application on noise
removal.
Related papers
- Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
We propose an arbitrary-scale Point cloud Upsampling framework using Voxel-based Network (textbfPU-VoxelNet)
Thanks to the completeness and regularity inherited from the voxel representation, voxel-based networks are capable of providing predefined grid space to approximate 3D surface.
A density-guided grid resampling method is developed to generate high-fidelity points while effectively avoiding sampling outliers.
arXiv Detail & Related papers (2024-03-08T07:31:14Z) - Surface Normal Estimation with Transformers [11.198936434401382]
We propose a Transformer to accurately predict normals from point clouds with noise and density variations.
Our method achieves state-of-the-art performance on both the synthetic shape dataset PCPNet, and the real-world indoor scene PCPNN.
arXiv Detail & Related papers (2024-01-11T08:52:13Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
Normal estimation for 3D point clouds is a fundamental task in 3D geometry processing.
We introduce a new paradigm for learning neural gradient functions, which encourages the neural network to fit the input point clouds.
Our excellent results on widely used benchmarks demonstrate that our method can learn more accurate normals for both unoriented and oriented normal estimation tasks.
arXiv Detail & Related papers (2023-11-01T09:25:29Z) - Rethinking the Approximation Error in 3D Surface Fitting for Point Cloud
Normal Estimation [39.79759035338819]
We present two basic design principles to bridge the gap between estimated and precise surface normals.
We implement these two principles using deep neural networks, and integrate them with the state-of-the-art (SOTA) normal estimation methods in a plug-and-play manner.
arXiv Detail & Related papers (2023-03-30T05:59:43Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations.
Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset.
arXiv Detail & Related papers (2022-10-13T16:39:53Z) - Learning Modified Indicator Functions for Surface Reconstruction [10.413340575612233]
We propose a learning-based approach for implicit surface reconstruction from raw point clouds without normals.
Our method is inspired by Gauss Lemma in potential energy theory, which gives an explicit integral formula for the indicator functions.
We design a novel deep neural network to perform surface integral and learn the modified indicator functions from un-oriented and noisy point clouds.
arXiv Detail & Related papers (2021-11-18T05:30:35Z) - AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds [31.641383879577894]
This paper presents a neural network for robust normal estimation on point clouds, named AdaFit, that can deal with point clouds with noise and density variations.
Existing works use a network to learn point-wise weights for weighted least surface fitting to estimate the normals.
We propose a simple yet effective solution that adds an additional offset prediction to improve the quality of normal estimation.
arXiv Detail & Related papers (2021-08-12T16:37:24Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
We propose a novel deep neural network based method, called PUGeo-Net, to generate uniform dense point clouds.
Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details.
arXiv Detail & Related papers (2020-02-24T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.