Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images
and Deep Convolutional Neural Networks
- URL: http://arxiv.org/abs/2003.10849v3
- Date: Mon, 5 Oct 2020 08:29:07 GMT
- Title: Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images
and Deep Convolutional Neural Networks
- Authors: Ali Narin, Ceren Kaya, Ziynet Pamuk
- Abstract summary: coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries.
There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily.
Five pre-trained convolutional neural network based models have been proposed for the detection of coronavirus pneumonia infected patient using chest X-ray radiographs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 2019 novel coronavirus disease (COVID-19), with a starting point in
China, has spread rapidly among people living in other countries, and is
approaching approximately 34,986,502 cases worldwide according to the
statistics of European Centre for Disease Prevention and Control. There are a
limited number of COVID-19 test kits available in hospitals due to the
increasing cases daily. Therefore, it is necessary to implement an automatic
detection system as a quick alternative diagnosis option to prevent COVID-19
spreading among people. In this study, five pre-trained convolutional neural
network based models (ResNet50, ResNet101, ResNet152, InceptionV3 and
Inception-ResNetV2) have been proposed for the detection of coronavirus
pneumonia infected patient using chest X-ray radiographs. We have implemented
three different binary classifications with four classes (COVID-19, normal
(healthy), viral pneumonia and bacterial pneumonia) by using 5-fold cross
validation. Considering the performance results obtained, it has seen that the
pre-trained ResNet50 model provides the highest classification performance
(96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy
for Dataset-3) among other four used models.
Related papers
- CIRCA: comprehensible online system in support of chest X-rays-based
COVID-19 diagnosis [37.41181188499616]
Deep learning techniques can help in the faster detection of COVID-19 cases and monitoring of disease progression.
Five different datasets were used to construct a representative dataset of 23 799 CXRs for model training.
A U-Net-based model was developed to identify a clinically relevant region of the CXR.
arXiv Detail & Related papers (2022-10-11T13:30:34Z) - A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray
Images using Convolutional Neural Networks [0.0]
COVID-19 (coronavirus) is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
The virus was first identified in mid-December 2019 in the Hubei province of Wuhan, China.
It has spread throughout the planet with more than 75.5 million confirmed cases and more than 1.67 million deaths.
arXiv Detail & Related papers (2022-01-24T21:12:25Z) - COVID-19 Detection through Deep Feature Extraction [0.0]
The study proposes a novel approach that utilizes deep feature extraction technique, pre-trained ResNet50 acting as the backbone of the network, combined with Logistic Regression as the head model.
The proposed model achieves a cross-validation accuracy of 100% on the COVID-19 and Normal X-Ray image classes.
arXiv Detail & Related papers (2021-11-21T08:32:08Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - FLANNEL: Focal Loss Based Neural Network Ensemble for COVID-19 Detection [61.04937460198252]
We construct the X-ray imaging data from 2874 patients with four classes: normal, bacterial pneumonia, non-COVID-19 viral pneumonia, and COVID-19.
To identify COVID-19, we propose a Focal Loss Based Neural Ensemble Network (FLANNEL)
FLANNEL consistently outperforms baseline models on COVID-19 identification task in all metrics.
arXiv Detail & Related papers (2020-10-30T03:17:31Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - COVID-Net S: Towards computer-aided severity assessment via training and
validation of deep neural networks for geographic extent and opacity extent
scoring of chest X-rays for SARS-CoV-2 lung disease severity [58.23203766439791]
Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity.
In this study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system.
arXiv Detail & Related papers (2020-05-26T16:33:52Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - CoroNet: A deep neural network for detection and diagnosis of COVID-19
from chest x-ray images [0.0]
CoroNet is a Deep Conceptional Neural Network model to automatically detect COVID-19 infection from chest X-ray images.
The proposed model achieved an overall accuracy of 89.6% and the precision and recall rate for COVID-19 cases are 93% and 98.2%.
arXiv Detail & Related papers (2020-04-10T07:46:07Z) - COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from
Radiographs [1.9798034349981157]
We present an accurate Convolutional Neural Network framework for differentiating COVID19 cases from other pneumonia cases.
This work presents a 3-step technique to fine-tune a pre-trained ResNet-50 architecture to improve model performance.
This model can help in the early screening of COVID19 cases and help reduce the burden on healthcare systems.
arXiv Detail & Related papers (2020-03-31T17:42:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.