FastDTW is approximate and Generally Slower than the Algorithm it
Approximates
- URL: http://arxiv.org/abs/2003.11246v5
- Date: Sat, 3 Sep 2022 04:42:42 GMT
- Title: FastDTW is approximate and Generally Slower than the Algorithm it
Approximates
- Authors: Renjie Wu and Eamonn J. Keogh
- Abstract summary: The Dynamic Time Warping (DTW) distance measure is the best measure to use for most tasks, in most domains.
One of the most cited approximate approaches is FastDTW.
In any realistic data mining application, the approximate FastDTW is much slower than the exact DTW.
- Score: 11.689905300531917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many time series data mining problems can be solved with repeated use of
distance measure. Examples of such tasks include similarity search, clustering,
classification, anomaly detection and segmentation. For over two decades it has
been known that the Dynamic Time Warping (DTW) distance measure is the best
measure to use for most tasks, in most domains. Because the classic DTW
algorithm has quadratic time complexity, many ideas have been introduced to
reduce its amortized time, or to quickly approximate it. One of the most cited
approximate approaches is FastDTW. The FastDTW algorithm has well over a
thousand citations and has been explicitly used in several hundred research
efforts. In this work, we make a surprising claim. In any realistic data mining
application, the approximate FastDTW is much slower than the exact DTW. This
fact clearly has implications for the community that uses this algorithm:
allowing it to address much larger datasets, get exact results, and do so in
less time.
Related papers
- OTW: Optimal Transport Warping for Time Series [75.69837166816501]
Dynamic Time Warping (DTW) has become the pragmatic choice for measuring distance between time series.
It suffers from unavoidable quadratic time complexity when the optimal alignment matrix needs to be computed exactly.
We introduce a new metric for time series data based on the Optimal Transport framework, called Optimal Transport Warping (OTW)
arXiv Detail & Related papers (2023-06-01T12:45:00Z) - Deep Declarative Dynamic Time Warping for End-to-End Learning of
Alignment Paths [54.53208538517505]
This paper addresses learning end-to-end models for time series data that include a temporal alignment step via dynamic time warping (DTW)
We propose a DTW layer based around bi-level optimisation and deep declarative networks, which we name DecDTW.
We show that this property is particularly useful for applications where downstream loss functions are defined on the optimal alignment path itself.
arXiv Detail & Related papers (2023-03-19T21:58:37Z) - Approximating DTW with a convolutional neural network on EEG data [9.409281517596396]
We propose a fast and differentiable approximation of Dynamic Time Wrapping (DTW)
We show that our methods achieve at least the same level of accuracy as other DTW main approximations with higher computational efficiency.
arXiv Detail & Related papers (2023-01-30T13:27:47Z) - GPU-accelerated Faster Mean Shift with euclidean distance metrics [1.3507758562554621]
Mean-shift algorithm is widely used to solve clustering problems.
In previous research, we proposed a novel GPU-accelerated Faster Mean-shift algorithm.
In this study, we extend and improve the previous algorithm to handle Euclidean distance metrics.
arXiv Detail & Related papers (2021-12-27T20:18:24Z) - Breaking the Linear Iteration Cost Barrier for Some Well-known
Conditional Gradient Methods Using MaxIP Data-structures [49.73889315176884]
Conditional gradient methods (CGM) are widely used in modern machine learning.
Most efforts focus on reducing the number of iterations as a means to reduce the overall running time.
We show the first algorithm, where the cost per iteration is sublinear in the number of parameters, for many fundamental optimization algorithms.
arXiv Detail & Related papers (2021-11-30T05:40:14Z) - TC-DTW: Accelerating Multivariate Dynamic Time Warping Through Triangle
Inequality and Point Clustering [6.502892821109196]
The most popular algorithm used today is still the one developed seventeen years ago.
The new solution, named TC-DTW, introduces Triangle Inequality and Point Clustering into the algorithm design.
In experiments on DTW-based nearest neighbor finding, the new solution avoids as much as 98% (60% average) DTW distance calculations and yields as much as 25X (7.5X average) speedups.
arXiv Detail & Related papers (2021-01-15T16:38:28Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Matrix Profile XXII: Exact Discovery of Time Series Motifs under DTW [1.282368486390644]
We present the first scalable exact method to discover time series motifs under Dynamic Time Warping.
Our algorithm can admissibly prune up to 99.99% of the DTW computations.
arXiv Detail & Related papers (2020-09-16T19:35:43Z) - Faster Person Re-Identification [68.22203008760269]
We introduce a new solution for fast ReID by formulating a novel Coarse-to-Fine hashing code search strategy.
It uses shorter codes to coarsely rank broad matching similarities and longer codes to refine only a few top candidates for more accurate instance ReID.
Experimental results on 2 datasets show that our proposed method (CtF) is not only 8% more accurate but also 5x faster than contemporary hashing ReID methods.
arXiv Detail & Related papers (2020-08-16T03:02:49Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.