Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning
- URL: http://arxiv.org/abs/2003.12718v3
- Date: Sun, 26 Apr 2020 07:07:22 GMT
- Title: Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning
- Authors: Gaole He, Junyi Li, Wayne Xin Zhao, Peiju Liu and Ji-Rong Wen
- Abstract summary: We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
- Score: 82.46332224556257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of Knowledge Graph Completion (KGC) aims to automatically infer the
missing fact information in Knowledge Graph (KG). In this paper, we take a new
perspective that aims to leverage rich user-item interaction data (user
interaction data for short) for improving the KGC task. Our work is inspired by
the observation that many KG entities correspond to online items in application
systems. However, the two kinds of data sources have very different intrinsic
characteristics, and it is likely to hurt the original performance using simple
fusion strategy. To address this challenge, we propose a novel adversarial
learning approach by leveraging user interaction data for the KGC task. Our
generator is isolated from user interaction data, and serves to improve the
performance of the discriminator. The discriminator takes the learned useful
information from user interaction data as input, and gradually enhances the
evaluation capacity in order to identify the fake samples generated by the
generator. To discover implicit entity preference of users, we design an
elaborate collaborative learning algorithms based on graph neural networks,
which will be jointly optimized with the discriminator. Such an approach is
effective to alleviate the issues about data heterogeneity and semantic
complexity for the KGC task. Extensive experiments on three real-world datasets
have demonstrated the effectiveness of our approach on the KGC task.
Related papers
- Capturing and Anticipating User Intents in Data Analytics via Knowledge Graphs [0.061446808540639365]
This work explores the usage of Knowledge Graphs (KG) as a basic framework for capturing a human-centered manner complex analytics.
The data stored in the generated KG can then be exploited to provide assistance (e.g., recommendations) to the users interacting with these systems.
arXiv Detail & Related papers (2024-11-01T20:45:23Z) - Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCL aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.
We introduce a multi-level vector quantizer in an end-to-end manner to quantize user and item representations into discrete codes.
For neighborhood structure, we propose virtual neighbor augmentation by treating discrete codes as virtual neighbors.
Regarding semantic relevance, we identify similar users/items based on shared discrete codes and interaction targets to generate the semantically relevant view.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - Personalized Federated Learning with Feature Alignment and Classifier
Collaboration [13.320381377599245]
Data heterogeneity is one of the most challenging issues in federated learning.
One such approach in deep neural networks based tasks is employing a shared feature representation and learning a customized classifier head for each client.
In this work, we conduct explicit local-global feature alignment by leveraging global semantic knowledge for learning a better representation.
arXiv Detail & Related papers (2023-06-20T19:58:58Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - Ranking-based Group Identification via Factorized Attention on Social
Tripartite Graph [68.08590487960475]
We propose a novel GNN-based framework named Contextualized Factorized Attention for Group identification (CFAG)
We devise tripartite graph convolution layers to aggregate information from different types of neighborhoods among users, groups, and items.
To cope with the data sparsity issue, we devise a novel propagation augmentation layer, which is based on our proposed factorized attention mechanism.
arXiv Detail & Related papers (2022-11-02T01:42:20Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - ROD: Reception-aware Online Distillation for Sparse Graphs [23.55530524584572]
We propose ROD, a novel reception-aware online knowledge distillation approach for sparse graph learning.
We design three supervision signals for ROD: multi-scale reception-aware graph knowledge, task-based supervision, and rich distilled knowledge.
Our approach has been extensively evaluated on 9 datasets and a variety of graph-based tasks.
arXiv Detail & Related papers (2021-07-25T11:55:47Z) - FAIRS -- Soft Focus Generator and Attention for Robust Object
Segmentation from Extreme Points [70.65563691392987]
We present a new approach to generate object segmentation from user inputs in the form of extreme points and corrective clicks.
We demonstrate our method's ability to generate high-quality training data as well as its scalability in incorporating extreme points, guiding clicks, and corrective clicks in a principled manner.
arXiv Detail & Related papers (2020-04-04T22:25:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.