Weighted Random Search for CNN Hyperparameter Optimization
- URL: http://arxiv.org/abs/2003.13300v1
- Date: Mon, 30 Mar 2020 09:40:14 GMT
- Title: Weighted Random Search for CNN Hyperparameter Optimization
- Authors: Razvan Andonie, Adrian-Catalin Florea
- Abstract summary: We introduce the weighted Random Search (WRS) method, a combination of Random Search (RS) and probabilistic greedy.
The criterion is the classification accuracy achieved within the same number of tested combinations of hyperparameter values.
According to our experiments, the WRS algorithm outperforms the other methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nearly all model algorithms used in machine learning use two different sets
of parameters: the training parameters and the meta-parameters
(hyperparameters). While the training parameters are learned during the
training phase, the values of the hyperparameters have to be specified before
learning starts. For a given dataset, we would like to find the optimal
combination of hyperparameter values, in a reasonable amount of time. This is a
challenging task because of its computational complexity. In previous work
[11], we introduced the Weighted Random Search (WRS) method, a combination of
Random Search (RS) and probabilistic greedy heuristic. In the current paper, we
compare the WRS method with several state-of-the art hyperparameter
optimization methods with respect to Convolutional Neural Network (CNN)
hyperparameter optimization. The criterion is the classification accuracy
achieved within the same number of tested combinations of hyperparameter
values. According to our experiments, the WRS algorithm outperforms the other
methods.
Related papers
- Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
We present a novel method that meta-learns neural network surrogates optimized for ranking the configurations' performances while modeling their uncertainty via ensembling.
In a large-scale experimental protocol comprising 12 baselines, 16 HPO search spaces and 86 datasets/tasks, we demonstrate that our method achieves new state-of-the-art results in HPO.
arXiv Detail & Related papers (2023-03-27T13:52:40Z) - Online Continuous Hyperparameter Optimization for Generalized Linear Contextual Bandits [55.03293214439741]
In contextual bandits, an agent sequentially makes actions from a time-dependent action set based on past experience.
We propose the first online continuous hyperparameter tuning framework for contextual bandits.
We show that it could achieve a sublinear regret in theory and performs consistently better than all existing methods on both synthetic and real datasets.
arXiv Detail & Related papers (2023-02-18T23:31:20Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - HyP-ABC: A Novel Automated Hyper-Parameter Tuning Algorithm Using
Evolutionary Optimization [1.6114012813668934]
We propose HyP-ABC, an automatic hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach.
Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned.
arXiv Detail & Related papers (2021-09-11T16:45:39Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNP is a scalable method that allows for real-time interactive exploration of projection methods by training neural network approximations.
We evaluate the performance of the HyperNP across three datasets in terms of performance and speed.
arXiv Detail & Related papers (2021-06-25T17:28:14Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - Self-supervised learning for fast and scalable time series
hyper-parameter tuning [14.9124328578934]
Hyper-parameters of time series models play an important role in time series analysis.
We propose a self-supervised learning framework for HPT (SSL-HPT)
arXiv Detail & Related papers (2021-02-10T21:16:13Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
We build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets.
We use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper- parameter search space to select a better combination.
arXiv Detail & Related papers (2020-06-03T08:53:48Z) - Weighted Random Search for Hyperparameter Optimization [0.0]
We introduce an improved version of Random Search (RS), used here for hyper parameter optimization of machine learning algorithms.
We generate new values for each hyper parameter with a probability of change, unlike the standard RS.
Within the same computational budget, our method yields better results than the standard RS.
arXiv Detail & Related papers (2020-04-03T15:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.