Transferring entangled states of photonic cat-state qubits in circuit
QED
- URL: http://arxiv.org/abs/2003.14168v1
- Date: Tue, 31 Mar 2020 13:14:30 GMT
- Title: Transferring entangled states of photonic cat-state qubits in circuit
QED
- Authors: Tong Liu, Zhen-Fei Zheng, Yu Zhang, Yu-Liang Fang, and Chui-Ping Yang
- Abstract summary: We propose a method for transferring quantum entangled states of two photonic cat-state qubits (cqubits) from two microwave cavities to the other two microwave cavities.
This proposal is universal and can be applied to accomplish the same task in a wide range of physical systems.
- Score: 7.307973399786272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for transferring quantum entangled states of two photonic
cat-state qubits (cqubits) from two microwave cavities to the other two
microwave cavities. This proposal is realized by using four microwave cavities
coupled to a superconducting flux qutrit. Because of using four cavities with
different frequencies, the inter-cavity crosstalk is significantly reduced.
Since only one coupler qutrit is used, the circuit resources is minimized. The
entanglement transfer is completed with a single-step operation only, thus this
proposal is quite simple. The third energy level of the coupler qutrit is not
populated during the state transfer, therefore decoherence from the higher
energy level is greatly suppressed. Our numerical simulations show that
high-fidelity transfer of two-cqubit entangled states from two transmission
line resonators to the other two transmission line resonators is feasible with
current circuit QED technology. This proposal is universal and can be applied
to accomplish the same task in a wide range of physical systems, such as four
microwave or optical cavities, which are coupled to a natural or artificial
three-level atom.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Simple realization of a hybrid controlled-controlled-Z gate with
photonic control qubits encoded via eigenstates of the photon-number parity
operator [3.1240043488226967]
We propose a simple method to realize a hybrid controlled-controlled-Z (CCZ) gate with two photonic qubits simultaneously controlling a superconducting (SC) target qubit.
We discuss how to apply this gate to generate a hybrid Greenberger-Horne-Zeilinger (GHZ) entangled state of a SC qubit and two photonic qubits.
arXiv Detail & Related papers (2023-06-04T01:42:59Z) - Generating entangled states from coherent states in circuit-QED [0.0]
Entangled states are self-evidently important to a wide range of applications in quantum communication and quantum information processing.
We propose an efficient and convenient two-step protocol for generating Bell states and NOON states of two microwave resonators from merely coherent states.
arXiv Detail & Related papers (2022-12-29T13:00:28Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Accelerated Gaussian quantum state transfer between two remote
mechanical resonators [0.0]
We devise a fast and reliable evolution path between two remote mechanical modes in separate optomechanical systems.
A quantum state transfer between the two nodes is conceived by engineering their coupling to an intermediate fiber optical channel.
Results show that while the adiabatic passage protocol is very sensitive to the decoherence, the shortcut to adiabaticity provides a robust and fast quantum state transfer.
arXiv Detail & Related papers (2022-05-17T06:41:26Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Transferring quantum entangled states between multiple
single-photon-state qubits and coherent-state qubits in circuit QED [1.1859913430860336]
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto n coherent-state (CS) qubits.
Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified.
arXiv Detail & Related papers (2021-07-09T04:31:08Z) - Initial Design of a W-band Superconducting Kinetic Inductance Qubit
(Kineticon) [0.0]
We describe a kinetic inductance qubit operating at W-band frequencies with a nonlinear nanowire section.
operating the qubits at higher frequencies may relax the dilution refrigerator temperature requirements.
arXiv Detail & Related papers (2020-12-15T22:40:32Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.