Real-Time Semantic Segmentation via Auto Depth, Downsampling Joint
Decision and Feature Aggregation
- URL: http://arxiv.org/abs/2003.14226v1
- Date: Tue, 31 Mar 2020 14:02:25 GMT
- Title: Real-Time Semantic Segmentation via Auto Depth, Downsampling Joint
Decision and Feature Aggregation
- Authors: Peng Sun, Jiaxiang Wu, Songyuan Li, Peiwen Lin, Junzhou Huang, and Xi
Li
- Abstract summary: We propose a joint search framework, called AutoRTNet, to automate the design of segmentation strategies.
Specifically, we propose hyper-cells to jointly decide the network depth and downsampling strategy, and an aggregation cell to achieve automatic multi-scale feature aggregation.
- Score: 54.28963233377946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To satisfy the stringent requirements on computational resources in the field
of real-time semantic segmentation, most approaches focus on the hand-crafted
design of light-weight segmentation networks. Recently, Neural Architecture
Search (NAS) has been used to search for the optimal building blocks of
networks automatically, but the network depth, downsampling strategy, and
feature aggregation way are still set in advance by trial and error. In this
paper, we propose a joint search framework, called AutoRTNet, to automate the
design of these strategies. Specifically, we propose hyper-cells to jointly
decide the network depth and downsampling strategy, and an aggregation cell to
achieve automatic multi-scale feature aggregation. Experimental results show
that AutoRTNet achieves 73.9% mIoU on the Cityscapes test set and 110.0 FPS on
an NVIDIA TitanXP GPU card with 768x1536 input images.
Related papers
- SimQ-NAS: Simultaneous Quantization Policy and Neural Architecture
Search [6.121126813817338]
Recent one-shot Neural Architecture Search algorithms rely on training a hardware-agnostic super-network tailored to a specific task and then extracting efficient sub-networks for different hardware platforms.
We show that by using multi-objective search algorithms paired with lightly trained predictors, we can efficiently search for both the sub-network architecture and the corresponding quantization policy.
arXiv Detail & Related papers (2023-12-19T22:08:49Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
Pruning-as-Search (PaS) is an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.
Our proposed architecture outperforms prior arts by around $1.0%$ top-1 accuracy on ImageNet-1000 classification task.
arXiv Detail & Related papers (2022-06-02T17:58:54Z) - CONetV2: Efficient Auto-Channel Size Optimization for CNNs [35.951376988552695]
This work introduces a method that is efficient in computationally constrained environments by examining the micro-search space of channel size.
In tackling channel-size optimization, we design an automated algorithm to extract the dependencies within different connected layers of the network.
We also introduce a novel metric that highly correlates with test accuracy and enables analysis of individual network layers.
arXiv Detail & Related papers (2021-10-13T16:17:19Z) - Neural Architecture Search for Efficient Uncalibrated Deep Photometric
Stereo [105.05232615226602]
We leverage differentiable neural architecture search (NAS) strategy to find uncalibrated PS architecture automatically.
Experiments on the DiLiGenT dataset show that the automatically searched neural architectures performance compares favorably with the state-of-the-art uncalibrated PS methods.
arXiv Detail & Related papers (2021-10-11T21:22:17Z) - Coarse-to-Fine Searching for Efficient Generative Adversarial Networks [43.21560798088658]
generative adversarial network (GAN) are usually designed to conduct various complex image generation.
We first discover an intact search space of generator networks including three dimensionalities, i.e., path, operator, channel for fully excavating the network performance.
To reduce the huge search cost, we explore a coarse-to-fine search strategy which divides the overall search process into three sub-optimization problems accordingly.
arXiv Detail & Related papers (2021-04-19T11:46:20Z) - Combined Depth Space based Architecture Search For Person
Re-identification [70.86236888223569]
We aim to design a lightweight and suitable network for person re-identification (ReID)
We propose a novel search space called Combined Depth Space (CDS), based on which we search for an efficient network architecture, which we call CDNet.
We then propose a low-cost search strategy named the Top-k Sample Search strategy to make full use of the search space and avoid trapping in local optimal result.
arXiv Detail & Related papers (2021-04-09T02:40:01Z) - AutoPose: Searching Multi-Scale Branch Aggregation for Pose Estimation [96.29533512606078]
We present AutoPose, a novel neural architecture search(NAS) framework.
It is capable of automatically discovering multiple parallel branches of cross-scale connections towards accurate and high-resolution 2D human pose estimation.
arXiv Detail & Related papers (2020-08-16T22:27:43Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
We present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation.
We used ResNet based feature extractor, dilated convolutional layers in downsampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them.
A new attention module is proposed to encode more contextual information and enhance the receptive field of the network.
arXiv Detail & Related papers (2020-06-30T20:19:09Z) - DHP: Differentiable Meta Pruning via HyperNetworks [158.69345612783198]
This paper introduces a differentiable pruning method via hypernetworks for automatic network pruning.
Latent vectors control the output channels of the convolutional layers in the backbone network and act as a handle for the pruning of the layers.
Experiments are conducted on various networks for image classification, single image super-resolution, and denoising.
arXiv Detail & Related papers (2020-03-30T17:59:18Z) - DCNAS: Densely Connected Neural Architecture Search for Semantic Image
Segmentation [44.46852065566759]
We propose a Densely Connected NAS (DCNAS) framework, which directly searches the optimal network structures for the multi-scale representations of visual information.
Specifically, by connecting cells with each other using learnable weights, we introduce a densely connected search space to cover an abundance of mainstream network designs.
We demonstrate that the architecture obtained from our DCNAS algorithm achieves state-of-the-art performances on public semantic image segmentation benchmarks.
arXiv Detail & Related papers (2020-03-26T13:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.