Worst-Case Risk Quantification under Distributional Ambiguity using
Kernel Mean Embedding in Moment Problem
- URL: http://arxiv.org/abs/2004.00166v2
- Date: Sun, 6 Sep 2020 15:02:55 GMT
- Title: Worst-Case Risk Quantification under Distributional Ambiguity using
Kernel Mean Embedding in Moment Problem
- Authors: Jia-Jie Zhu, Wittawat Jitkrittum, Moritz Diehl, Bernhard Sch\"olkopf
- Abstract summary: We propose to quantify the worst-case risk under distributional ambiguity using the kernel mean embedding.
We numerically test the proposed method in characterizing the worst-case constraint violation probability in the context of a constrained control system.
- Score: 17.909696462645023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to anticipate rare and impactful events, we propose to quantify the
worst-case risk under distributional ambiguity using a recent development in
kernel methods -- the kernel mean embedding. Specifically, we formulate the
generalized moment problem whose ambiguity set (i.e., the moment constraint) is
described by constraints in the associated reproducing kernel Hilbert space in
a nonparametric manner. We then present the tractable approximation and its
theoretical justification. As a concrete application, we numerically test the
proposed method in characterizing the worst-case constraint violation
probability in the context of a constrained stochastic control system.
Related papers
- Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Online Constraint Tightening in Stochastic Model Predictive Control: A
Regression Approach [49.056933332667114]
No analytical solutions exist for chance-constrained optimal control problems.
We propose a data-driven approach for learning the constraint-tightening parameters online during control.
Our approach yields constraint-tightening parameters that tightly satisfy the chance constraints.
arXiv Detail & Related papers (2023-10-04T16:22:02Z) - On Regularization and Inference with Label Constraints [62.60903248392479]
We compare two strategies for encoding label constraints in a machine learning pipeline, regularization with constraints and constrained inference.
For regularization, we show that it narrows the generalization gap by precluding models that are inconsistent with the constraints.
For constrained inference, we show that it reduces the population risk by correcting a model's violation, and hence turns the violation into an advantage.
arXiv Detail & Related papers (2023-07-08T03:39:22Z) - Margin theory for the scenario-based approach to robust optimization in
high dimension [0.0]
This paper deals with the scenario approach to robust optimization.
This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in a problem.
arXiv Detail & Related papers (2023-03-07T13:33:46Z) - Kernel Conditional Moment Constraints for Confounding Robust Inference [22.816690686310714]
We study policy evaluation of offline contextual bandits subject to unobserved confounders.
We propose a general estimator that provides a sharp lower bound of the policy value.
arXiv Detail & Related papers (2023-02-26T16:44:13Z) - On the Importance of Gradient Norm in PAC-Bayesian Bounds [92.82627080794491]
We propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities.
We empirically analyze the effect of this new loss-gradient norm term on different neural architectures.
arXiv Detail & Related papers (2022-10-12T12:49:20Z) - Probabilistic learning inference of boundary value problem with
uncertainties based on Kullback-Leibler divergence under implicit constraints [0.0]
We present a general methodology of a probabilistic learning inference that allows for estimating a posterior probability model for a boundary value problem from a prior probability model.
A statistical surrogate model of the implicit mapping, which represents the constraints, is introduced.
In a second part, an application is presented to illustrate the proposed theory and is also, as such, a contribution to the three-dimensional homogenization of heterogeneous linear elastic media.
arXiv Detail & Related papers (2022-02-10T16:00:10Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - On Lower Bounds for Standard and Robust Gaussian Process Bandit
Optimization [55.937424268654645]
We consider algorithm-independent lower bounds for the problem of black-box optimization of functions having a bounded norm.
We provide a novel proof technique for deriving lower bounds on the regret, with benefits including simplicity, versatility, and an improved dependence on the error probability.
arXiv Detail & Related papers (2020-08-20T03:48:14Z) - Cautious Reinforcement Learning via Distributional Risk in the Dual
Domain [45.17200683056563]
We study the estimation of risk-sensitive policies in reinforcement learning problems defined by a Markov Decision Process (MDPs) whose state and action spaces are countably finite.
We propose a new definition of risk, which we call caution, as a penalty function added to the dual objective of the linear programming (LP) formulation of reinforcement learning.
arXiv Detail & Related papers (2020-02-27T23:18:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.