The Edge of Depth: Explicit Constraints between Segmentation and Depth
- URL: http://arxiv.org/abs/2004.00171v1
- Date: Wed, 1 Apr 2020 00:03:20 GMT
- Title: The Edge of Depth: Explicit Constraints between Segmentation and Depth
- Authors: Shengjie Zhu, Garrick Brazil, Xiaoming Liu
- Abstract summary: We study the mutual benefits of two common computer vision tasks, self-supervised depth estimation and semantic segmentation from images.
We propose to explicitly measure the border consistency between segmentation and depth and minimize it.
Through extensive experiments, our proposed approach advances the state of the art on unsupervised monocular depth estimation in the KITTI.
- Score: 25.232436455640716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we study the mutual benefits of two common computer vision
tasks, self-supervised depth estimation and semantic segmentation from images.
For example, to help unsupervised monocular depth estimation, constraints from
semantic segmentation has been explored implicitly such as sharing and
transforming features. In contrast, we propose to explicitly measure the border
consistency between segmentation and depth and minimize it in a greedy manner
by iteratively supervising the network towards a locally optimal solution.
Partially this is motivated by our observation that semantic segmentation even
trained with limited ground truth (200 images of KITTI) can offer more accurate
border than that of any (monocular or stereo) image-based depth estimation.
Through extensive experiments, our proposed approach advances the state of the
art on unsupervised monocular depth estimation in the KITTI.
Related papers
- Towards Deeply Unified Depth-aware Panoptic Segmentation with
Bi-directional Guidance Learning [63.63516124646916]
We propose a deeply unified framework for depth-aware panoptic segmentation.
We propose a bi-directional guidance learning approach to facilitate cross-task feature learning.
Our method sets the new state of the art for depth-aware panoptic segmentation on both Cityscapes-DVPS and SemKITTI-DVPS datasets.
arXiv Detail & Related papers (2023-07-27T11:28:33Z) - Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised
Monocular Depth Estimation [11.929584800629673]
We propose a novel network to learn an Occlusion-aware Coarse-to-Fine Depth map for self-supervised monocular depth estimation.
The proposed OCFD-Net does not only employ a discrete depth constraint for learning a coarse-level depth map, but also employ a continuous depth constraint for learning a scene depth residual.
arXiv Detail & Related papers (2022-03-21T12:43:42Z) - X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task
Distillation [69.9604394044652]
We propose a novel method to improve the self-supervised training of monocular depth via cross-task knowledge distillation.
During training, we utilize a pretrained semantic segmentation teacher network and transfer its semantic knowledge to the depth network.
We extensively evaluate the efficacy of our proposed approach on the KITTI benchmark and compare it with the latest state of the art.
arXiv Detail & Related papers (2021-10-24T19:47:14Z) - Self-Supervised Monocular Depth Estimation with Internal Feature Fusion [12.874712571149725]
Self-supervised learning for depth estimation uses geometry in image sequences for supervision.
We propose a novel depth estimation networkDIFFNet, which can make use of semantic information in down and upsampling procedures.
arXiv Detail & Related papers (2021-10-18T17:31:11Z) - Towards Interpretable Deep Networks for Monocular Depth Estimation [78.84690613778739]
We quantify the interpretability of a deep MDE network by the depth selectivity of its hidden units.
We propose a method to train interpretable MDE deep networks without changing their original architectures.
Experimental results demonstrate that our method is able to enhance the interpretability of deep MDE networks.
arXiv Detail & Related papers (2021-08-11T16:43:45Z) - Domain Adaptive Semantic Segmentation with Self-Supervised Depth
Estimation [84.34227665232281]
Domain adaptation for semantic segmentation aims to improve the model performance in the presence of a distribution shift between source and target domain.
We leverage the guidance from self-supervised depth estimation, which is available on both domains, to bridge the domain gap.
We demonstrate the effectiveness of our proposed approach on the benchmark tasks SYNTHIA-to-Cityscapes and GTA-to-Cityscapes.
arXiv Detail & Related papers (2021-04-28T07:47:36Z) - Learning Depth via Leveraging Semantics: Self-supervised Monocular Depth
Estimation with Both Implicit and Explicit Semantic Guidance [34.62415122883441]
We propose a Semantic-aware Spatial Feature Alignment scheme to align implicit semantic features with depth features for scene-aware depth estimation.
We also propose a semantic-guided ranking loss to explicitly constrain the estimated depth maps to be consistent with real scene contextual properties.
Our method produces high quality depth maps which are consistently superior either on complex scenes or diverse semantic categories.
arXiv Detail & Related papers (2021-02-11T14:29:51Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
We introduce the concept of semantic objectness to exploit the geometric relationship of these two tasks.
We then propose a Semantic Object and Depth Estimation Network (SOSD-Net) based on the objectness assumption.
To the best of our knowledge, SOSD-Net is the first network that exploits the geometry constraint for simultaneous monocular depth estimation and semantic segmentation.
arXiv Detail & Related papers (2021-01-19T02:41:03Z) - Semantic-Guided Representation Enhancement for Self-supervised Monocular
Trained Depth Estimation [39.845944724079814]
Self-supervised depth estimation has shown its great effectiveness in producing high quality depth maps given only image sequences as input.
However, its performance usually drops when estimating on border areas or objects with thin structures due to the limited depth representation ability.
We propose a semantic-guided depth representation enhancement method, which promotes both local and global depth feature representations.
arXiv Detail & Related papers (2020-12-15T02:24:57Z) - Adaptive confidence thresholding for monocular depth estimation [83.06265443599521]
We propose a new approach to leverage pseudo ground truth depth maps of stereo images generated from self-supervised stereo matching methods.
The confidence map of the pseudo ground truth depth map is estimated to mitigate performance degeneration by inaccurate pseudo depth maps.
Experimental results demonstrate superior performance to state-of-the-art monocular depth estimation methods.
arXiv Detail & Related papers (2020-09-27T13:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.