Extreme Multi-label Classification from Aggregated Labels
- URL: http://arxiv.org/abs/2004.00198v1
- Date: Wed, 1 Apr 2020 02:13:09 GMT
- Title: Extreme Multi-label Classification from Aggregated Labels
- Authors: Yanyao Shen, Hsiang-fu Yu, Sujay Sanghavi, Inderjit Dhillon
- Abstract summary: Extreme multi-label classification (XMC) is the problem of finding the relevant labels for an input from a very large universe of possible labels.
We develop a new and scalable algorithm to impute individual-sample labels from the group labels.
This can be paired with any existing XMC method to solve the aggregated label problem.
- Score: 27.330826185375415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extreme multi-label classification (XMC) is the problem of finding the
relevant labels for an input, from a very large universe of possible labels. We
consider XMC in the setting where labels are available only for groups of
samples - but not for individual ones. Current XMC approaches are not built for
such multi-instance multi-label (MIML) training data, and MIML approaches do
not scale to XMC sizes. We develop a new and scalable algorithm to impute
individual-sample labels from the group labels; this can be paired with any
existing XMC method to solve the aggregated label problem. We characterize the
statistical properties of our algorithm under mild assumptions, and provide a
new end-to-end framework for MIML as an extension. Experiments on both
aggregated label XMC and MIML tasks show the advantages over existing
approaches.
Related papers
- Learning label-label correlations in Extreme Multi-label Classification via Label Features [44.00852282861121]
Extreme Multi-label Text Classification (XMC) involves learning a classifier that can assign an input with a subset of most relevant labels from millions of label choices.
Short-text XMC with label features has found numerous applications in areas such as query-to-ad-phrase matching in search ads, title-based product recommendation, prediction of related searches.
We propose Gandalf, a novel approach which makes use of a label co-occurrence graph to leverage label features as additional data points to supplement the training distribution.
arXiv Detail & Related papers (2024-05-03T21:18:43Z) - PINA: Leveraging Side Information in eXtreme Multi-label Classification
via Predicted Instance Neighborhood Aggregation [105.52660004082766]
The eXtreme Multi-label Classification(XMC) problem seeks to find relevant labels from an exceptionally large label space.
We propose Predicted Instance Neighborhood Aggregation (PINA), a data enhancement method for the general XMC problem.
Unlike most existing XMC frameworks that treat labels and input instances as featureless indicators and independent entries, PINA extracts information from the label metadata and the correlations among training instances.
arXiv Detail & Related papers (2023-05-21T05:00:40Z) - Complementary to Multiple Labels: A Correlation-Aware Correction
Approach [65.59584909436259]
We show theoretically how the estimated transition matrix in multi-class CLL could be distorted in multi-labeled cases.
We propose a two-step method to estimate the transition matrix from candidate labels.
arXiv Detail & Related papers (2023-02-25T04:48:48Z) - Large Loss Matters in Weakly Supervised Multi-Label Classification [50.262533546999045]
We first regard unobserved labels as negative labels, casting the W task into noisy multi-label classification.
We propose novel methods for W which reject or correct the large loss samples to prevent model from memorizing the noisy label.
Our methodology actually works well, validating that treating large loss properly matters in a weakly supervised multi-label classification.
arXiv Detail & Related papers (2022-06-08T08:30:24Z) - Open Vocabulary Extreme Classification Using Generative Models [24.17018785195843]
The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set.
We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order.
We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels.
arXiv Detail & Related papers (2022-05-12T00:33:49Z) - Extreme Zero-Shot Learning for Extreme Text Classification [80.95271050744624]
Extreme Zero-Shot XMC (EZ-XMC) and Few-Shot XMC (FS-XMC) are investigated.
We propose to pre-train Transformer-based encoders with self-supervised contrastive losses.
We develop a pre-training method MACLR, which thoroughly leverages the raw text with techniques including Multi-scale Adaptive Clustering, Label Regularization, and self-training with pseudo positive pairs.
arXiv Detail & Related papers (2021-12-16T06:06:42Z) - Label Disentanglement in Partition-based Extreme Multilabel
Classification [111.25321342479491]
We show that the label assignment problem in partition-based XMC can be formulated as an optimization problem.
We show that our method can successfully disentangle multi-modal labels, leading to state-of-the-art (SOTA) results on four XMC benchmarks.
arXiv Detail & Related papers (2021-06-24T03:24:18Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
We propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative)
We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.
arXiv Detail & Related papers (2020-08-16T11:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.