Uncertainty quantification in imaging and automatic horizon tracking: a
Bayesian deep-prior based approach
- URL: http://arxiv.org/abs/2004.00227v3
- Date: Tue, 14 Apr 2020 22:42:14 GMT
- Title: Uncertainty quantification in imaging and automatic horizon tracking: a
Bayesian deep-prior based approach
- Authors: Ali Siahkoohi, Gabrio Rizzuti, Felix J. Herrmann
- Abstract summary: Uncertainty quantification (UQ) deals with a probabilistic description of the solution nonuniqueness and data noise sensitivity.
In this paper, we focus on how UQ trickles down to horizon tracking for the determination of stratigraphic models.
- Score: 0.5156484100374059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In inverse problems, uncertainty quantification (UQ) deals with a
probabilistic description of the solution nonuniqueness and data noise
sensitivity. Setting seismic imaging into a Bayesian framework allows for a
principled way of studying uncertainty by solving for the model posterior
distribution. Imaging, however, typically constitutes only the first stage of a
sequential workflow, and UQ becomes even more relevant when applied to
subsequent tasks that are highly sensitive to the inversion outcome. In this
paper, we focus on how UQ trickles down to horizon tracking for the
determination of stratigraphic models and investigate its sensitivity with
respect to the imaging result. As such, the main contribution of this work
consists in a data-guided approach to horizon tracking uncertainty analysis.
This work is fundamentally based on a special reparameterization of
reflectivity, known as "deep prior". Feasible models are restricted to the
output of a convolutional neural network with a fixed input, while weights and
biases are Gaussian random variables. Given a deep prior model, the network
parameters are sampled from the posterior distribution via a Markov chain Monte
Carlo method, from which the conditional mean and point-wise standard deviation
of the inferred reflectivities are approximated. For each sample of the
posterior distribution, a reflectivity is generated, and the horizons are
tracked automatically. In this way, uncertainty on model parameters naturally
translates to horizon tracking. As part of the validation for the proposed
approach, we verified that the estimated confidence intervals for the horizon
tracking coincide with geologically complex regions, such as faults.
Related papers
- Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
Quantizing images into discrete representations has been a fundamental problem in unified generative modeling.
deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while quantization suffers from low codebook utilization and reconstruction objective.
This paper presents a regularized vector quantization framework that allows to mitigate perturbed above issues effectively by applying regularization from two perspectives.
arXiv Detail & Related papers (2023-03-11T15:20:54Z) - Posterior sampling with CNN-based, Plug-and-Play regularization with
applications to Post-Stack Seismic Inversion [0.0]
Uncertainty quantification is crucial to inverse problems, as it could provide valuable information about the inversion results.
We present a framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser.
We call this algorithm new Plug-and-Play Stein Vari-SVGD and demonstrate its ability in producing high-resolution, trustworthy samples.
arXiv Detail & Related papers (2022-12-30T08:20:49Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Deep Bayesian inference for seismic imaging with tasks [0.6445605125467573]
We propose to use techniques from Bayesian inference and deep neural networks to translate uncertainty in seismic imaging to uncertainty in tasks performed on the image.
A systematic approach is proposed to translate uncertainty due to noise in the data to confidence intervals of automatically tracked horizons in the image.
arXiv Detail & Related papers (2021-10-10T15:25:44Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Parameterizing uncertainty by deep invertible networks, an application
to reservoir characterization [0.9176056742068814]
Uncertainty quantification for full-waveform inversion provides a probabilistic characterization of the ill-conditioning of the problem.
We propose an approach characterized by training a deep network that "pushes forward" Gaussian random inputs into the model space as if they were sampled from the actual posterior distribution.
arXiv Detail & Related papers (2020-04-16T18:37:56Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization.
We also propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction.
arXiv Detail & Related papers (2020-02-20T15:13:27Z) - A deep-learning based Bayesian approach to seismic imaging and
uncertainty quantification [0.4588028371034407]
Uncertainty is essential when dealing with ill-conditioned inverse problems.
It is often not possible to formulate a prior distribution that precisely encodes our prior knowledge about the unknown.
We propose to use the functional form of a randomly convolutional neural network as an implicit structured prior.
arXiv Detail & Related papers (2020-01-13T23:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.